python中的迭代器,生成器与装饰器详解
迭代器
每一个可迭代类内部都要实现__iter__()方法,返回一个迭代类对象,迭代类对象则定义了这个可迭代类如何迭代。
for循环调用list本质上是是调用了list的迭代器进行迭代。
# 对list进行for循环本质上是调用了list的迭代器 list = [1,2,3,4] # for 循环调用 for elem in list: print(elem) # 迭代器调用 list_iter = list.__iter__() while True: try: print(next(list_iter)) except StopIteration: break
实现一个自己自定的迭代类,规定迭代一个可迭代的数据结构为“倒计时”模式。
# 可迭代对象类 class CountDown(object): def __init__(self,num): self.num = num def __iter__(self): return MyIterator(self.num) # 迭代类 class MyIterator(object): def __init__(self,num): self.NUM= num self.FINAL = 0 self.now = num def __iter__(self): return self def __next__(self): step = 1 if self.NUM
生成器
含有yield指令的函数可以称为生成器,它可以将函数执行对象转化为可迭代的对象。这样就可以像debug一样一步一步推进函数。可以实现的功能是可以实现让函数内部暂停,实现了程序的异步功能,这样可以及进行该函数与外部构件的信息交互,实现了系统的解耦。
from collections import Iterable def f(): pass # 含有yield指令的函数可以称为生成器 def g(): yield() print(type(f()),isinstance(f(),Iterable)) print(type(g()),isinstance(g(),Iterable))
使用生成器可以降低系统的耦合性
import os # 生成器是迭代器的一种,让函数对象内部进行迭代 # 可以实现让函数内部暂停,实现了程序的异步功能,同时也实现了解耦。 def my_input(): global str str = input("input a line") pass def my_write(): with open("workfile.txt","w") as f: while(str): f.write(str+"\n") yield() return mw = my_write() while(True): my_input() try: next(mw) except StopIteration: pass if not str: break
装饰器
装饰器封装一个函数,并且用这样或者那样的方式来修改它的行为。
不带参数的装饰器
# 不带参数的装饰器 from functools import wraps # 装饰器封装一个函数,并且用这样或者那样的方式来修改它的行为。 def mydecorator(a_func): @wraps(a_func) #声明这个注解就可以不重写传入的函数,只是调用的时候wrap一下。不加的话,a_func函数可以看作被重写为wrapTheFunction. def wrapTheFunction(): print(f"function in {id(a_func)} starts...") a_func() print(f"function in {id(a_func)} ends...") return wrapTheFunction # 在函数定义前加入此注解就可以将函数传入装饰器并包装 @mydecorator def f(): print("hi") pass f() print(f.__name__)
带参数的装饰器(实现输出到自定义的日志文件)
# 带参数的装饰器(实现输出到自定义的日志文件) from functools import wraps def logit(logfile="out.log"): def mydecorator2(a_func): @wraps(a_func) def wrapTheFunction(*args, **kwargs): # 这个保证了函数可以含有任意形参 log_string = a_func.__name__ + " was called" print(log_string) # 打开logfile,并写入内容 with open(logfile, "a") as opened_file: # 现在将日志打到指定的logfile opened_file.write(log_string + "\n") return a_func(*args, **kwargs) return wrapTheFunction return mydecorator2 # func group1 @ logit("out1.log") def func1(str): print(str) pass @ logit("out2.log") def func2(): pass func1("I have a foul smell") func2()
实现一个装饰器类(这样写可以简化装饰器函数,并且提高封装性)
# 带参数的装饰器(实现输出到自定义的日志文件) from functools import wraps def logit(logfile="out.log"): def mydecorator2(a_func): @wraps(a_func) def wrapTheFunction(*args, **kwargs): # 这个保证了函数可以含有任意形参 log_string = a_func.__name__ + " was called" print(log_string) # 打开logfile,并写入内容 with open(logfile, "a") as opened_file: # 现在将日志打到指定的logfile opened_file.write(log_string + "\n") return a_func(*args, **kwargs) return wrapTheFunction return mydecorator2 # func group1 @ logit("out1.log") def func1(str): print(str) pass @ logit("out2.log") def func2(): pass func1("I have a foul smell") func2()
总结
到此这篇关于python中的迭代器,生成器与装饰器详解的文章就介绍到这了,更多相关python迭代器,生成器与装饰器内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!
X 关闭
X 关闭
- 15G资费不大降!三大运营商谁提供的5G网速最快?中国信通院给出答案
- 2联想拯救者Y70发布最新预告:售价2970元起 迄今最便宜的骁龙8+旗舰
- 3亚马逊开始大规模推广掌纹支付技术 顾客可使用“挥手付”结账
- 4现代和起亚上半年出口20万辆新能源汽车同比增长30.6%
- 5如何让居民5分钟使用到各种设施?沙特“线性城市”来了
- 6AMD实现连续8个季度的增长 季度营收首次突破60亿美元利润更是翻倍
- 7转转集团发布2022年二季度手机行情报告:二手市场“飘香”
- 8充电宝100Wh等于多少毫安?铁路旅客禁止、限制携带和托运物品目录
- 9好消息!京东与腾讯续签三年战略合作协议 加强技术创新与供应链服务
- 10名创优品拟通过香港IPO全球发售4100万股 全球发售所得款项有什么用处?