我们在 《torch.utils.data.DataLoader与迭代器转换操作》 中介绍了如何使用Pytorch内置的数据集进行论文实验,如 torchvision.datasets 。下面是加载内置训练数据集的常见操作:
from torchvision.datasets import FashionMNIST from torchvision.transforms import Compose, ToTensor, Normalize RAW_DATA_PATH = "./rawdata" transform = Compose( [ToTensor(), Normalize((0.1307,), (0.3081,)) ] ) train_data = FashionMNIST( root=RAW_DATA_PATH, download=True, train=True, transform=transform )
这里的train_data
做为 dataset
对象,它拥有许多熟悉,我们可以通过以下方法获取样本数据的分类类别集合、样本的特征维度、样本的标签集合等信息。
classes = train_data.classes num_features = train_data.data[0].shape[0] train_labels = train_data.targets print(classes) print(num_features) print(train_labels)
输出如下:
["T-shirt/top", "Trouser", "Pullover", "Dress", "Coat", "Sandal", "Shirt", "Sneaker", "Bag", "Ankle boot"]
28
tensor([9, 0, 0, ..., 3, 0, 5])
但是,我们常常会在训练集的基础上拆分出验证集(或者只用部分数据来进行训练)。我们想到的第一个方法是使用 torch.utils.data.random_split
对 dataset
进行划分,下面我们假设划分10000个样本做为训练集,其余样本做为验证集:
from torch.utils.data import random_split k = 10000 train_data, valid_data = random_split(train_data, [k, len(train_data)-k])
注意我们如果打印 train_data 和 valid_data
的类型,可以看到显示:
已经不再是torchvision.datasets.mnist.FashionMNIST
对象,而是一个所谓的 Subset 对象!此时 Subset 对象虽然仍然还存有 data 属性,但是内置的 target
和 classes
属性已经不复存在,
比如如果我们强行访问 valid_data 的 target 属性:
valid_target = valid_data.target
就会报如下错误:
"Subset" object has no attribute "target"
但如果我们在后续的代码中常常会将拆分后的数据集也默认为 dataset 对象,那么该如何做到代码的一致性呢?
这里有一个trick,那就是以继承 SubSet 类的方式的方式定义一个新的 CustomSubSet 类,使新类在保持 SubSet 类的基本属性的基础上,拥有和原本数据集类相似的属性,如 targets
和 classes
等:
from torch.utils.data import Subset class CustomSubset(Subset): """A custom subset class""" def __init__(self, dataset, indices): super().__init__(dataset, indices) self.targets = dataset.targets # 保留targets属性 self.classes = dataset.classes # 保留classes属性 def __getitem__(self, idx): #同时支持索引访问操作 x, y = self.dataset[self.indices[idx]] return x, y def __len__(self): # 同时支持取长度操作 return len(self.indices)
然后就引出了第二种划分方法,即通过初始化 CustomSubset
对象的方式直接对数据集进行划分(这里为了简化省略了shuffle的步骤):
import numpy as np from copy import deepcopy origin_data = deepcopy(train_data) train_data = CustomSubset(origin_data, np.arange(k)) valid_data = CustomSubset(origin_data, np.arange(k, len(origin_data))-k)
注意: CustomSubset
类的初始化方法的第二个参数 indices 为样本索引,我们可以通过 np.arange()
的方法来创建。
然后,我们再访问 valid_data 对应的 classes 和 targes 属性:
print(valid_data.classes) print(valid_data.targets)
此时,我们发现可以成功访问这些属性了:
["T-shirt/top", "Trouser", "Pullover", "Dress", "Coat", "Sandal", "Shirt", "Sneaker", "Bag", "Ankle boot"] tensor([9, 0, 0, ..., 3, 0, 5])
当然, CustomSubset
的作用并不只是添加数据集的属性,我们还可以自定义一些数据预处理操作。
我们将类的结构修改如下:
class CustomSubset(Subset): """A custom subset class with customizable data transformation""" def __init__(self, dataset, indices, subset_transform=None): super().__init__(dataset, indices) self.targets = dataset.targets self.classes = dataset.classes self.subset_transform = subset_transform def __getitem__(self, idx): x, y = self.dataset[self.indices[idx]] if self.subset_transform: x = self.subset_transform(x) return x, y def __len__(self): return len(self.indices)
我们可以在使用样本前设置好数据预处理算子:
from torchvision import transforms valid_data.subset_transform = transforms.Compose(\ [transforms.RandomRotation((180,180))])
这样,我们再像下列这样用索引访问取出数据集样本时,就会自动调用算子完成预处理操作:
print(valid_data[0])
打印结果缩略如下:
(tensor([[[-0.4242, -0.4242, -0.4242, ......-0.4242, -0.4242, -0.4242, -0.4242, -0.4242]]]), 9)
到此这篇关于Pytorch技法之继承Subset类完成自定义数据拆分的文章就介绍到这了,更多相关继承Subset类完成自定义数据拆分内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!
X 关闭
X 关闭
- 15G资费不大降!三大运营商谁提供的5G网速最快?中国信通院给出答案
- 2联想拯救者Y70发布最新预告:售价2970元起 迄今最便宜的骁龙8+旗舰
- 3亚马逊开始大规模推广掌纹支付技术 顾客可使用“挥手付”结账
- 4现代和起亚上半年出口20万辆新能源汽车同比增长30.6%
- 5如何让居民5分钟使用到各种设施?沙特“线性城市”来了
- 6AMD实现连续8个季度的增长 季度营收首次突破60亿美元利润更是翻倍
- 7转转集团发布2022年二季度手机行情报告:二手市场“飘香”
- 8充电宝100Wh等于多少毫安?铁路旅客禁止、限制携带和托运物品目录
- 9好消息!京东与腾讯续签三年战略合作协议 加强技术创新与供应链服务
- 10名创优品拟通过香港IPO全球发售4100万股 全球发售所得款项有什么用处?