Python OpenCV实现姿态识别的详细代码
目录
前言环境安装下载并安装Anaconda安装JupyterNotebook生成JupyterNotebook项目目录下载训练库单张图片识别导入库加载训练模型初始化载入图片显示图片调整图片颜色姿态识别视频识别实时摄像头识别参考前言
想要使用摄像头实现一个多人姿态识别
环境安装
下载并安装 Anaconda
官网连接 https://anaconda.cloud/installers
安装 Jupyter Notebook
检查Jupyter Notebook是否安装
Tip:这里涉及到一个切换Jupyter Notebook内核的问题,在我这篇文章中有提到
AnacondaNavigator Jupyter Notebook更换Python内核https://www.jb51.net/article/238496.htm
生成Jupyter Notebook项目目录
打开Anaconda Prompt
切换到项目目录
输入Jupyter notebook
在浏览器中打开 Jupyter Notebook
并创建新的记事本
下载训练库
图片以及训练库都在下方链接
https://github.com/quanhua92/human-pose-estimation-opencv
将图片和训练好的模型放到项目路径中graph_opt.pb
为训练好的模型
单张图片识别
导入库
import cv2 as cv import os import matplotlib.pyplot as plt
加载训练模型
net=cv.dnn.readNetFromTensorflow("graph_opt.pb")
初始化
inWidth=368 inHeight=368 thr=0.2 BODY_PARTS = { "Nose": 0, "Neck": 1, "RShoulder": 2, "RElbow": 3, "RWrist": 4, "LShoulder": 5, "LElbow": 6, "LWrist": 7, "RHip": 8, "RKnee": 9, "RAnkle": 10, "LHip": 11, "LKnee": 12, "LAnkle": 13, "REye": 14, "LEye": 15, "REar": 16, "LEar": 17, "Background": 18 } POSE_PAIRS = [ ["Neck", "RShoulder"], ["Neck", "LShoulder"], ["RShoulder", "RElbow"], ["RElbow", "RWrist"], ["LShoulder", "LElbow"], ["LElbow", "LWrist"], ["Neck", "RHip"], ["RHip", "RKnee"], ["RKnee", "RAnkle"], ["Neck", "LHip"], ["LHip", "LKnee"], ["LKnee", "LAnkle"], ["Neck", "Nose"], ["Nose", "REye"], ["REye", "REar"], ["Nose", "LEye"], ["LEye", "LEar"] ]
载入图片
img = cv.imread("image.jpg")
显示图片
plt.imshow(img)
调整图片颜色
plt.imshow(cv.cvtColor(img,cv.COLOR_BGR2RGB))
姿态识别
def pose_estimation(frame): frameWidth=frame.shape[1] frameHeight=frame.shape[0] net.setInput(cv.dnn.blobFromImage(frame, 1.0, (inWidth, inHeight), (127.5, 127.5, 127.5), swapRB=True, crop=False)) out = net.forward() out = out[:, :19, :, :] # MobileNet output [1, 57, -1, -1], we only need the first 19 elements assert(len(BODY_PARTS) == out.shape[1]) points = [] for i in range(len(BODY_PARTS)): # Slice heatmap of corresponging body"s part. heatMap = out[0, i, :, :] # Originally, we try to find all the local maximums. To simplify a sample # we just find a global one. However only a single pose at the same time # could be detected this way. _, conf, _, point = cv.minMaxLoc(heatMap) x = (frameWidth * point[0]) / out.shape[3] y = (frameHeight * point[1]) / out.shape[2] # Add a point if it"s confidence is higher than threshold. points.append((int(x), int(y)) if conf > thr else None) for pair in POSE_PAIRS: partFrom = pair[0] partTo = pair[1] assert(partFrom in BODY_PARTS) assert(partTo in BODY_PARTS) idFrom = BODY_PARTS[partFrom] idTo = BODY_PARTS[partTo] # 绘制线条 if points[idFrom] and points[idTo]: cv.line(frame, points[idFrom], points[idTo], (0, 255, 0), 3) cv.ellipse(frame, points[idFrom], (3, 3), 0, 0, 360, (0, 0, 255), cv.FILLED) cv.ellipse(frame, points[idTo], (3, 3), 0, 0, 360, (0, 0, 255), cv.FILLED) t, _ = net.getPerfProfile() freq = cv.getTickFrequency() / 1000 cv.putText(frame, "%.2fms" % (t / freq), (10, 20), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0)) return frame # 处理图片 estimated_image=pose_estimation(img) # 显示图片 plt.imshow(cv.cvtColor(estimated_image,cv.COLOR_BGR2RGB))
视频识别
Tip:与上面图片识别代码是衔接的
视频来自互联网,侵删
cap = cv.VideoCapture("testvideo.mp4") cap.set(3,800) cap.set(4,800) if not cap.isOpened(): cap=cv.VideoCapture(0) raise IOError("Cannot open vide") while cv.waitKey(1) < 0: hasFrame,frame=cap.read() if not hasFrame: cv.waitKey() break frameWidth=frame.shape[1] frameHeight=frame.shape[0] net.setInput(cv.dnn.blobFromImage(frame, 1.0, (inWidth, inHeight), (127.5, 127.5, 127.5), swapRB=True, crop=False)) out = net.forward() out = out[:, :19, :, :] # MobileNet output [1, 57, -1, -1], we only need the first 19 elements assert(len(BODY_PARTS) == out.shape[1]) points = [] for i in range(len(BODY_PARTS)): # Slice heatmap of corresponging body"s part. heatMap = out[0, i, :, :] # Originally, we try to find all the local maximums. To simplify a sample # we just find a global one. However only a single pose at the same time # could be detected this way. _, conf, _, point = cv.minMaxLoc(heatMap) x = (frameWidth * point[0]) / out.shape[3] y = (frameHeight * point[1]) / out.shape[2] # Add a point if it"s confidence is higher than threshold. points.append((int(x), int(y)) if conf > thr else None) for pair in POSE_PAIRS: partFrom = pair[0] partTo = pair[1] assert(partFrom in BODY_PARTS) assert(partTo in BODY_PARTS) idFrom = BODY_PARTS[partFrom] idTo = BODY_PARTS[partTo] if points[idFrom] and points[idTo]: cv.line(frame, points[idFrom], points[idTo], (0, 255, 0), 3) cv.ellipse(frame, points[idFrom], (3, 3), 0, 0, 360, (0, 0, 255), cv.FILLED) cv.ellipse(frame, points[idTo], (3, 3), 0, 0, 360, (0, 0, 255), cv.FILLED) t, _ = net.getPerfProfile() freq = cv.getTickFrequency() / 1000 cv.putText(frame, "%.2fms" % (t / freq), (10, 20), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0)) cv.imshow("Video Tutorial",frame)
实时摄像头识别
Tip:与上面图片识别代码是衔接的
cap = cv.VideoCapture(0) cap.set(cv.CAP_PROP_FPS,10) cap.set(3,800) cap.set(4,800) if not cap.isOpened(): cap=cv.VideoCapture(0) raise IOError("Cannot open vide") while cv.waitKey(1) < 0: hasFrame,frame=cap.read() if not hasFrame: cv.waitKey() break frameWidth=frame.shape[1] frameHeight=frame.shape[0] net.setInput(cv.dnn.blobFromImage(frame, 1.0, (inWidth, inHeight), (127.5, 127.5, 127.5), swapRB=True, crop=False)) out = net.forward() out = out[:, :19, :, :] # MobileNet output [1, 57, -1, -1], we only need the first 19 elements assert(len(BODY_PARTS) == out.shape[1]) points = [] for i in range(len(BODY_PARTS)): # Slice heatmap of corresponging body"s part. heatMap = out[0, i, :, :] # Originally, we try to find all the local maximums. To simplify a sample # we just find a global one. However only a single pose at the same time # could be detected this way. _, conf, _, point = cv.minMaxLoc(heatMap) x = (frameWidth * point[0]) / out.shape[3] y = (frameHeight * point[1]) / out.shape[2] # Add a point if it"s confidence is higher than threshold. points.append((int(x), int(y)) if conf > thr else None) for pair in POSE_PAIRS: partFrom = pair[0] partTo = pair[1] assert(partFrom in BODY_PARTS) assert(partTo in BODY_PARTS) idFrom = BODY_PARTS[partFrom] idTo = BODY_PARTS[partTo] if points[idFrom] and points[idTo]: cv.line(frame, points[idFrom], points[idTo], (0, 255, 0), 3) cv.ellipse(frame, points[idFrom], (3, 3), 0, 0, 360, (0, 0, 255), cv.FILLED) cv.ellipse(frame, points[idTo], (3, 3), 0, 0, 360, (0, 0, 255), cv.FILLED) t, _ = net.getPerfProfile() freq = cv.getTickFrequency() / 1000 cv.putText(frame, "%.2fms" % (t / freq), (10, 20), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0)) cv.imshow("Video Tutorial",frame)
参考
DeepLearning_by_PhDScholar
Human Pose Estimation using opencv | python | OpenPose | stepwise implementation for beginners
https://www.youtube.com/watch?v=9jQGsUidKHs
到此这篇关于PythonOpenCV实现姿态识别的文章就介绍到这了,更多相关Python姿态识别内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!
X 关闭
X 关闭
- 15G资费不大降!三大运营商谁提供的5G网速最快?中国信通院给出答案
- 2联想拯救者Y70发布最新预告:售价2970元起 迄今最便宜的骁龙8+旗舰
- 3亚马逊开始大规模推广掌纹支付技术 顾客可使用“挥手付”结账
- 4现代和起亚上半年出口20万辆新能源汽车同比增长30.6%
- 5如何让居民5分钟使用到各种设施?沙特“线性城市”来了
- 6AMD实现连续8个季度的增长 季度营收首次突破60亿美元利润更是翻倍
- 7转转集团发布2022年二季度手机行情报告:二手市场“飘香”
- 8充电宝100Wh等于多少毫安?铁路旅客禁止、限制携带和托运物品目录
- 9好消息!京东与腾讯续签三年战略合作协议 加强技术创新与供应链服务
- 10名创优品拟通过香港IPO全球发售4100万股 全球发售所得款项有什么用处?