Python matplotlib可视化之绘制韦恩图
来源:脚本之家    时间:2022-02-24 18:10:11
目录
本文速览1、matplotlib_venn(1)2组数据venn图(2)3组数据venn图2、pyvenn2组数据venn3组数据venn4组数据venn5组数据venn6组数据venn

本文速览

2组数据venn

3组数据venn

4组数据venn

5组数据venn图

6组数据venn

python中Matplotlib并没有现成的函数可直接绘制venn图, 不过已经有前辈基于matplotlib.patches及matplotlib.path开发了两个轮子:

matplotlib_venn【2~3组数据,比较多博客介绍】:https://github.com/konstantint/matplotlib-venn

pyvenn【2~6组数据】:https://github.com/tctianchi/pyvenn

1、 matplotlib_venn

该模块包含"venn2", "venn2_circles", "venn3", "venn3_circles"四个关键函数,这里主要详细介绍"venn2","venn3"同理。

(1)2组数据venn图

matplotlib_venn.venn2(subsets, set_labels=("A", "B"), set_colors=("r", "g"), alpha=0.4, normalize_to=1.0, ax=None, subset_label_formatter=None)

绘图数据格式

subsets参数接收绘图数据集,以下5种方式均可以,注意细微异同。

#导入依赖packages
import matplotlib.pyplot as plt
from matplotlib_venn import venn2,venn2_circles#记得安装matplotlib_venn(pip install matplotlib_venn 或者conda install matplotlib_venn)
 
 
# subsets参数
#绘图数据的格式,以下5种方式均可以,注意异同
subset = [[{1,2,3},{1,2,4}],#列表list(集合1,集合2)
          ({1,2,3},{1,2,4}),#元组tuple(集合1,集合2)
          {"10": 1, "01": 1, "11": 2},#字典dict(A独有,B独有,AB共有)
          (3, 3, 2),####元组tuple(A有,B有,AB共有),注意和其它几种方式的异同点
          [3,3,2]#列表list(A有,B有,AB共有)           
         ]
for i in subset:
    my_dpi=100
    plt.figure(figsize=(500/my_dpi, 500/my_dpi), dpi=my_dpi)
    g=venn2(subsets=i)#默认数据绘制venn图,只需传入绘图数据
    plt.title("subsets=%s"%str(i))
    plt.show()

一些简单参数介绍

my_dpi=150
plt.figure(figsize=(580/my_dpi, 580/my_dpi), dpi=my_dpi)#控制图尺寸的同时,使图高分辨率(高清)显示
g=venn2(subsets = [{1,2,3},{1,2,4}], #绘图数据集
        set_labels = ("Label 1", "Label 2"), #设置组名
        set_colors=("#098154","#c72e29"),#设置圈的颜色,中间颜色不能修改
        alpha=0.6,#透明度
        normalize_to=1.0,#venn图占据figure的比例,1.0为占满
       )
plt.show()

所有圈外框属性设置

my_dpi=150
plt.figure(figsize=(580/my_dpi, 580/my_dpi), dpi=my_dpi)
g=venn2(subsets = [{1,2,3},{1,2,4}],
        set_labels = ("Label 1", "Label 2"),
        set_colors=("#098154","#c72e29"),
        alpha=0.6,
        normalize_to=1.0,
       )
g=venn2_circles(subsets = [{1,2,3},{1,2,4}], 
        linestyle="--", linewidth=0.8, color="black"#外框线型、线宽、颜色
       )
plt.show()

单个圈特性设置

g.get_patch_by_id("10")返回一个matplotlib.patches.PathPatch对象,有诸多参数可个性化修改 ,详细见matplotlib官网。

my_dpi=150
plt.figure(figsize=(550/my_dpi, 550/my_dpi), dpi=my_dpi)
 
g=venn2(subsets = [{1,2,3},{1,2,4}], 
        set_labels = ("Label 1", "Label 2"), 
        set_colors=("#098154","#c72e29"),
        alpha=0.6,
        normalize_to=1.0,
       )
g.get_patch_by_id("10").set_edgecolor("red")#左圈外框颜色
g.get_patch_by_id("10").set_linestyle("--")#左圈外框线型
g.get_patch_by_id("10").set_linewidth(2)#左圈外框线宽
g.get_patch_by_id("01").set_edgecolor("green")#右圈外框颜色
g.get_patch_by_id("11").set_edgecolor("blue")#中间圈外框颜色
plt.show()

单个圈文本设置

g.get_label_by_id("10") 返回一个matplotlib.text.Text对象,有诸多参数可个性化修改 ,详细见matplotlib官网。

my_dpi=150
plt.figure(figsize=(600/my_dpi, 600/my_dpi), dpi=my_dpi)
g=venn2(subsets = [{1,2,3},{1,2,4}], 
        set_labels = ("Label 1", "Label 2"), 
        set_colors=("#098154","#c72e29"),
        alpha=0.6,
        normalize_to=1.0,
       )
g.get_label_by_id("10").set_fontfamily("Microsoft YaHei")#左圈中1的字体设置为微软雅黑
g.get_label_by_id("10").set_fontsize(20)#1的大小设置为20
g.get_label_by_id("10").set_color("r")#1的颜色
g.get_label_by_id("10").set_rotation(45)#1的倾斜度

添加额外注释

my_dpi=150
plt.figure(figsize=(580/my_dpi, 580/my_dpi), dpi=my_dpi)#控制图尺寸的同时,使图高分辨率(高清)显示
g=venn2(subsets = [{1,2,3},{1,2,4}], #绘图数据集
        set_labels = ("Label 1", "Label 2"), #设置组名
        set_colors=("#098154","#c72e29"),#设置圈的颜色,中间颜色不能修改
        alpha=0.6,#透明度
        normalize_to=1.0,#venn图占据figure的比例,1.0为占满
       )
 
plt.annotate("I like this green part!", 
             color="#098154",
             xy=g.get_label_by_id("10").get_position() - np.array([0, 0.05]), 
             xytext=(-80,40),
             ha="center", textcoords="offset points", 
             bbox=dict(boxstyle="round,pad=0.5", fc="#098154", alpha=0.6),#注释文字底纹
             arrowprops=dict(arrowstyle="-|>", connectionstyle="arc3,rad=0.5",color="#098154")#箭头属性设置
            )
 
 
plt.annotate("She like this red part!", 
             color="#c72e29",
             xy=g.get_label_by_id("01").get_position() + np.array([0, 0.05]), 
             xytext=(80,40),
             ha="center", textcoords="offset points", 
             bbox=dict(boxstyle="round,pad=0.5", fc="#c72e29", alpha=0.6),
             arrowprops=dict(arrowstyle="-|>", connectionstyle="arc3,rad=0.5",color="#c72e29")
            )
 
plt.annotate("We both dislike this strange part!", 
             color="black",
             xy=g.get_label_by_id("11").get_position() + np.array([0, 0.05]), 
             xytext=(20,80),
             ha="center", textcoords="offset points", 
             bbox=dict(boxstyle="round,pad=0.5", fc="grey", alpha=0.6),
             arrowprops=dict(arrowstyle="-|>", connectionstyle="arc3,rad=-0.5",color="black")
            )
 
plt.show()

多子图绘制venn图

fig,axs=plt.subplots(1,3, figsize=(10,8),dpi=150)
g=venn2(subsets = [{1,2,3},{1,2,4}], 
        set_labels = ("Label 1", "Label 2"), 
        set_colors=("#098154","#c72e29"),
        alpha=0.6,
        normalize_to=1.0,
        ax=axs[0],#该参数指定
       )
g=venn2(subsets = [{1,2,3,4,5,6},{1,2,4,5,6,7,8}], 
        set_labels = ("Label 3", "Label 4"), 
        set_colors=("#098154","#c72e29"),
        alpha=0.6,
        normalize_to=1.0,
        ax=axs[1],
       )
g=venn2(subsets = [{0,1,2,3},{1,2,4}], 
        set_labels = ("Label 5", "Label 6"), 
        set_colors=("#098154","#c72e29"),
        alpha=0.6,
        normalize_to=1.0,
        ax=axs[2],
       )
plt.show()

(2)3组数据venn图

matplotlib_venn.venn3(subsets, set_labels=("A", "B", "C"), set_colors=("r", "g", "b"), alpha=0.4, normalize_to=1.0, ax=None, subset_label_formatter=None)

参数和venn2几乎一样,介绍几个重要参数

基本参数介绍

my_dpi=150
plt.figure(figsize=(600/my_dpi, 600/my_dpi), dpi=my_dpi)#控制图尺寸的同时,使图高分辨率(高清)显示
g=venn3(subsets = [{1,2,3},{1,2,4},{2,6,7}], #传入三组数据
        set_labels = ("Label 1", "Label 2","Label 3"), #设置组名
        set_colors=("#01a2d9", "#31A354", "#c72e29"),#设置圈的颜色,中间颜色不能修改
        alpha=0.8,#透明度
        normalize_to=1.0,#venn图占据figure的比例,1.0为占满
       )
plt.show()

个性化设置图中7部分每一部分

(100, 010, 110, 001, 101, 011, 111)分别代替每一小块,那么代替的是那一小块了?

my_dpi=150
plt.figure(figsize=(600/my_dpi, 600/my_dpi), dpi=my_dpi)
g=venn3(subsets = [{1,2,3},{1,2,4},{2,6,7}],
        set_labels = ("Label 1", "Label 2","Label 3"),
        set_colors=("#01a2d9", "#31A354", "#c72e29"),
        alpha=0.8,
        normalize_to=1.0,
       )
 
for i in list("100, 010, 110, 001, 101, 011, 111".split(", ")):
    g.get_label_by_id("%s"%i).set_text("%s"%i)#修改每个组分的文本
    
#然后就可以如同venn2中那样个性化设置了
g.get_label_by_id("110").set_color("red")#1的颜色
g.get_patch_by_id("110").set_edgecolor("red")
 
plt.show()

2、pyvenn

同样,该库还是基于matplotlib.patches二次开发;

区别于上文,pyvenn支持2到6组数据;matplotlib_venn更加灵活多变。

pyvenn具有"venn2", "venn3", "venn4", "venn5", "venn6"五大主要函数,这里主要介绍venn2,其它同理。

2组数据venn

venn.draw_annotate、venn.draw_text、venn.venn2中的fill()参数非常助于个性化设置。

venn2(labels, names=["A", "B"], **options)   
import matplotlib.pyplot as plt
 
#添加pyvenn路径
import sys
sys.path.append(r"path\pyvenn-master")
import venn
 
mycolor=[[0.10588235294117647, 0.6196078431372549, 0.4666666666666667,0.6],
         [0.9058823529411765, 0.1607843137254902, 0.5411764705882353, 0.6]]
 
labels = venn.get_labels([[1,2,3,4,5,6],[1,2,4,5,6,7,8]], fill=["number", 
                                                                "logic",#开启每个组分代码
                                                                "percent"#每个组分的百分比
                                                               ],
                        )
fig, ax = venn.venn2(labels,
                    names=list("AB"),
                    dpi=96,
                    colors=mycolor,#传入RPGA色号,直接传hex色号或者RGB会导致重叠部分被覆盖
                    fontsize=15,#控制组名及中间数字大小
                   
                    
                    )
plt.style.use("seaborn-whitegrid")
ax.set_axis_on()#开启坐标网格线
#ax.set_title("venn2")
 
 
 
# 提取plt.annotate部分参数
venn.draw_annotate(fig, ax, x=0.3, y=0.18, #箭头的位置
                   textx=0.1, texty=0.05, #箭尾的位置
                   text="Aoligei!", color="r", #注释文本属性
                   arrowcolor="r",#箭头的颜色等属性
                  )
 
#添加文本
venn.draw_text(fig, ax, x=0.25, y=0.2, text="number:logic(percent)",
               fontsize=12, ha="center", va="center")

3组数据venn

labels = venn.get_labels([range(10), range(5, 15), range(3, 8)], fill=["number",
                                                                       "logic",
                                                                       "percent"
                                                                      ]
                        )
fig, ax = venn.venn3(labels, names=list("ABC"),dpi=96)
fig.show()

4组数据venn

labels = venn.get_labels([range(10), range(5, 15), range(3, 8), range(8, 17)], fill=["number", 
                                                                                     "logic",
                                                                                     "percent"                                                                                     
                                                                                    ])
fig, ax = venn.venn4(labels, names=list("ABCD"))
fig.show()

5组数据venn

labels = venn.get_labels([range(10), range(5, 15), range(3, 8), range(8, 17), range(10, 20)], fill=["number",
                                                                                                    "logic",
                                                                                                    "percent"
                                                                                                   ])
fig, ax = venn.venn5(labels, names=list("ABCDEF"))
fig.show()

6组数据venn

labels = venn.get_labels([range(10), range(5, 15), range(3, 8), range(8, 17), range(10, 20), range(13, 25)], fill=["number", "logic","percent"])
fig, ax = venn.venn6(labels, names=list("ABCDEF"))
fig.show()

以上就是Python matplotlib可视化之绘制韦恩图的详细内容,更多关于Python matplotlib韦恩图的资料请关注脚本之家其它相关文章!

关键词: 高分辨率 个性化设置 属性设置 相关文章

X 关闭

X 关闭