Matlab绘制散点密度图的教程详解
目录
效果1工具函数完整代码2参数说明3使用方式3.1散点赋色3.2等高线图3.3带直方图的散点图3.4带直方图的等高线图4使用方式扩展–与ggplot修饰器联动效果
原理也很简单,通过matlab自带的ksdensity获得网格每一点密度,通过密度拟合曲面,再计算每个数据点对应的概率,并将概率映射到颜色即可
为了怕大家找不到函数这次工具函数放到最前面
1工具函数完整代码
function [CData,h,XMesh,YMesh,ZMesh,colorList]=density2C(X,Y,XList,YList,colorList) [XMesh,YMesh]=meshgrid(XList,YList); XYi=[XMesh(:) YMesh(:)]; F=ksdensity([X,Y],XYi); ZMesh=zeros(size(XMesh)); ZMesh(1:length(F))=F; h=interp2(XMesh,YMesh,ZMesh,X,Y); if nargin<5 colorList=[0.2700 0 0.3300 0.2700 0.2300 0.5100 0.1900 0.4100 0.5600 0.1200 0.5600 0.5500 0.2100 0.7200 0.4700 0.5600 0.8400 0.2700 0.9900 0.9100 0.1300]; end colorFunc=colorFuncFactory(colorList); CData=colorFunc((h-min(h))./(max(h)-min(h))); colorList=colorFunc(linspace(0,1,100)"); function colorFunc=colorFuncFactory(colorList) x=(0:size(colorList,1)-1)./(size(colorList,1)-1); y1=colorList(:,1);y2=colorList(:,2);y3=colorList(:,3); colorFunc=@(X)[interp1(x,y1,X,"pchip"),interp1(x,y2,X,"pchip"),interp1(x,y3,X,"pchip")]; end end
2参数说明
输入:
X,Y 散点坐标XList,YList 用来构造密度曲面网格的序列,其实就是把XLim,YLim分成小份,例如XList=0:0.1:10colorList 颜色表mx3数组,用来构造将高度映射到颜色函数的数据表输出:
CData各个点对应颜色h 各个点对应核密度XMesh,YMesh,ZMesh 核密度曲面数据colorList 插值后更细密的颜色表3使用方式
假如编写了如下程序:
PntSet1=mvnrnd([2 3],[1 0;0 2],800); PntSet2=mvnrnd([6 7],[1 0;0 2],800); PntSet3=mvnrnd([8 9],[1 0;0 1],800); PntSet=[PntSet1;PntSet2;PntSet3]; scatter(PntSet(:,1),PntSet(:,2),"filled");
结果:
3.1散点赋色
将上面那段代码改写
PntSet1=mvnrnd([2 3],[1 0;0 2],800); PntSet2=mvnrnd([6 7],[1 0;0 2],800); PntSet3=mvnrnd([8 9],[1 0;0 1],800); PntSet=[PntSet1;PntSet2;PntSet3]; CData=density2C(PntSet(:,1),PntSet(:,2),-2:0.1:15,-2:0.1:15); scatter(PntSet(:,1),PntSet(:,2),"filled","CData",CData);
3.2等高线图
PntSet1=mvnrnd([2 3],[1 0;0 2],800); PntSet2=mvnrnd([6 7],[1 0;0 2],800); PntSet3=mvnrnd([8 9],[1 0;0 1],800); PntSet=[PntSet1;PntSet2;PntSet3]; [~,~,XMesh,YMesh,ZMesh,colorList]=density2C(PntSet(:,1),PntSet(:,2),-2:0.1:12,-2:0.1:12); colormap(colorList) contourf(XMesh,YMesh,ZMesh,10)
3.3带直方图的散点图
PntSet1=mvnrnd([2 3],[1 0;0 2],800); PntSet2=mvnrnd([6 7],[1 0;0 2],800); PntSet3=mvnrnd([8 9],[1 0;0 1],800); PntSet=[PntSet1;PntSet2;PntSet3]; colorList=[0.9400 0.9700 0.9600 0.8900 0.9300 0.9200 0.8200 0.9100 0.8800 0.6900 0.8500 0.7700 0.5900 0.7800 0.6900 0.5500 0.7500 0.6500 0.4500 0.6500 0.5600 0.4000 0.5800 0.4900 0.3500 0.5100 0.4200 0.2500 0.3600 0.3100 0.1300 0.1700 0.1400]; CData=density2C(PntSet(:,1),PntSet(:,2),-2:0.1:15,-2:0.1:15,colorList); set(gcf,"Color",[1 1 1]); % 主分布图 ax1=axes("Parent",gcf);hold(ax1,"on") scatter(ax1,PntSet(:,1),PntSet(:,2),"filled","CData",CData); ax1.Position=[0.1,0.1,0.6,0.6]; % X轴直方图 ax2=axes("Parent",gcf);hold(ax2,"on") histogram(ax2,PntSet(:,1),"FaceColor",[0.78 0.88 0.82],... "EdgeColor","none","FaceAlpha",0.7) ax2.Position=[0.1,0.75,0.6,0.15]; ax2.YColor="none"; ax2.XTickLabel=""; ax2.TickDir="out"; ax2.XLim=ax1.XLim; % Y轴直方图 ax3=axes("Parent",gcf);hold(ax3,"on") histogram(ax3,PntSet(:,2),"FaceColor",[0.78 0.88 0.82],... "EdgeColor","none","FaceAlpha",0.7,"Orientation","horizontal") ax3.Position=[0.75,0.1,0.15,0.6]; ax3.XColor="none"; ax3.YTickLabel=""; ax3.TickDir="out"; ax3.YLim=ax1.YLim;
3.4带直方图的等高线图
PntSet1=mvnrnd([2 3],[1 0;0 2],800); PntSet2=mvnrnd([6 7],[1 0;0 2],800); PntSet3=mvnrnd([8 9],[1 0;0 1],800); PntSet=[PntSet1;PntSet2;PntSet3]; colorList=[0.9300 0.9500 0.9700 0.7900 0.8400 0.9100 0.6500 0.7300 0.8500 0.5100 0.6200 0.7900 0.3700 0.5100 0.7300 0.2700 0.4100 0.6300 0.2100 0.3200 0.4900 0.1500 0.2200 0.3500 0.0900 0.1300 0.2100 0.0300 0.0400 0.0700]; [~,~,XMesh,YMesh,ZMesh,colorList]=density2C(PntSet(:,1),PntSet(:,2),-2:0.1:13,-2:0.1:13,colorList); set(gcf,"Color",[1 1 1]); % 主分布图 ax1=axes("Parent",gcf);hold(ax1,"on") colormap(colorList) contourf(XMesh,YMesh,ZMesh,10,"EdgeColor","none") ax1.Position=[0.1,0.1,0.6,0.6]; ax1.TickDir="out"; % X轴直方图 ax2=axes("Parent",gcf);hold(ax2,"on") [f,xi]=ksdensity(PntSet(:,1)); fill([xi,xi(1)],[f,0],[0.34 0.47 0.71],"FaceAlpha",... 0.3,"EdgeColor",[0.34 0.47 0.71],"LineWidth",1.2) ax2.Position=[0.1,0.75,0.6,0.15]; ax2.YColor="none"; ax2.XTickLabel=""; ax2.TickDir="out"; ax2.XLim=ax1.XLim; % Y轴直方图 ax3=axes("Parent",gcf);hold(ax3,"on") [f,yi]=ksdensity(PntSet(:,2)); fill([f,0],[yi,yi(1)],[0.34 0.47 0.71],"FaceAlpha",... 0.3,"EdgeColor",[0.34 0.47 0.71],"LineWidth",1.2) ax3.Position=[0.75,0.1,0.15,0.6]; ax3.XColor="none"; ax3.YTickLabel=""; ax3.TickDir="out"; ax3.YLim=ax1.YLim;
4使用方式扩展–与ggplot修饰器联动
ggplot风格修饰器:(点击图片跳转链接)
示例1
PntSet1=mvnrnd([2 3],[1 0;0 2],800); PntSet2=mvnrnd([6 7],[1 0;0 2],800); PntSet3=mvnrnd([8 9],[1 0;0 1],800); PntSet=[PntSet1;PntSet2;PntSet3]; ax=gca; ax.XLim=[-1 13]; ax.YLim=[-1 13]; ax=ggplotAxes2D(ax); CData=density2C(PntSet(:,1),PntSet(:,2),0:0.1:15,0:0.1:15); scatter(PntSet(:,1),PntSet(:,2),"filled","CData",CData);
是不是瞬间有那味了:
示例2
PntSet1=mvnrnd([2 3],[1 0;0 2],800); PntSet2=mvnrnd([6 7],[1 0;0 2],800); PntSet3=mvnrnd([8 9],[1 0;0 1],800); PntSet=[PntSet1;PntSet2;PntSet3]; ax=gca; ax.XLim=[-3 13]; ax.YLim=[-3 13]; ax=ggplotAxes2D(ax); [~,~,XMesh,YMesh,ZMesh,colorList]=density2C(PntSet(:,1),PntSet(:,2),-2:0.1:12,-2:0.1:12); colormap(colorList) contourf(XMesh,YMesh,ZMesh,10)
以上就是Matlab绘制散点密度图的教程详解的详细内容,更多关于Matlab散点密度图的资料请关注脚本之家其它相关文章!
X 关闭
X 关闭
- 15G资费不大降!三大运营商谁提供的5G网速最快?中国信通院给出答案
- 2联想拯救者Y70发布最新预告:售价2970元起 迄今最便宜的骁龙8+旗舰
- 3亚马逊开始大规模推广掌纹支付技术 顾客可使用“挥手付”结账
- 4现代和起亚上半年出口20万辆新能源汽车同比增长30.6%
- 5如何让居民5分钟使用到各种设施?沙特“线性城市”来了
- 6AMD实现连续8个季度的增长 季度营收首次突破60亿美元利润更是翻倍
- 7转转集团发布2022年二季度手机行情报告:二手市场“飘香”
- 8充电宝100Wh等于多少毫安?铁路旅客禁止、限制携带和托运物品目录
- 9好消息!京东与腾讯续签三年战略合作协议 加强技术创新与供应链服务
- 10名创优品拟通过香港IPO全球发售4100万股 全球发售所得款项有什么用处?