你需要掌握的20个Python常用技巧
目录
1.字符串反转2.每个单词的第一个字母大写3.字符串查找唯一元素4.重复打印字符串和列表n次5.列表生成6.变量交换7.字符串拆分为子字符串列表8.多个字符串组合为一个字符串9.检测字符串是否为回文10.统计列表中元素的次数11.判断两个字符串是否为Anagrams12.使用try-except-else-block模块13.使用枚举函数得到key/value对14.检查对象的内存使用情况15.合并字典16.计算执行一段代码所花费的时间17.列表展开18.列表采样19.数字化20.检查列表元素的唯一性Python的可读性和简单性是其广受欢迎的两大原因,本文介绍20个常用的Python技巧来提高代码的可读性,并能帮助你节省大量时间,下面的技巧将在你的日常编码练习中非常实用。
1.字符串反转
使用Python切片反转字符串:
# Reversing a string using slicing my_string = "ABCDE" reversed_string = my_string[::-1] print(reversed_string) # Output # EDCBA
2.每个单词的第一个字母大写
使用title函数方法:
my_string = "my name is chaitanya baweja" # using the title() function of string class new_string = my_string.title() print(new_string) # Output # My Name Is Chaitanya Baweja
3. 字符串查找唯一元素
使用集合的概念查找字符串的唯一元素:
my_string = "aavvccccddddeee" # converting the string to a set temp_set = set(my_string) # stitching set into a string using join new_string = "".join(temp_set) print(new_string) # output # cdvae
4.重复打印字符串和列表n次
你可以使用乘法符号(*)打印字符串或列表多次:
n = 3 # number of repetitions my_string = "abcd" my_list = [1,2,3] print(my_string*n) # abcdabcdabcd print(my_list*n) # [1,2,3,1,2,3,1,2,3]
5.列表生成
# Multiplying each element in a list by 2 original_list = [1,2,3,4] new_list = [2*x for x in original_list] print(new_list) # [2,4,6,8]
6.变量交换
a = 1 b = 2 a, b = b, a print(a) # 2 print(b) # 1
7.字符串拆分为子字符串列表
使用.split()函数:
string_1 = "My name is Chaitanya Baweja" string_2 = "sample/ string 2" # default separator " " print(string_1.split()) # ["My", "name", "is", "Chaitanya", "Baweja"] # defining separator as "/" print(string_2.split("/")) # ["sample", " string 2"]
8.多个字符串组合为一个字符串
list_of_strings = ["My", "name", "is", "Chaitanya", "Baweja"] # Using join with the comma separator print(",".join(list_of_strings)) # Output # My,name,is,Chaitanya,Baweja
9.检测字符串是否为回文
my_string = "abcba" if my_string == my_string[::-1]: print("palindrome") else: print("not palindrome") # Output # palindrome
10. 统计列表中元素的次数
# finding frequency of each element in a list from collections import Counter my_list = ["a","a","b","b","b","c","d","d","d","d","d"] count = Counter(my_list) # defining a counter object print(count) # Of all elements # Counter({"d": 5, "b": 3, "a": 2, "c": 1}) print(count["b"]) # of individual element # 3 print(count.most_common(1)) # most frequent element # [("d", 5)]
11.判断两个字符串是否为Anagrams
Anagrams的含义为两个单词中,每个英文单词(不含大小写)出现的次数相同,使用Counter类判断两个字符串是否为Anagrams。
from collections import Counter str_1, str_2, str_3 = "acbde", "abced", "abcda" cnt_1, cnt_2, cnt_3 = Counter(str_1), Counter(str_2), Counter(str_3) if cnt_1 == cnt_2: print("1 and 2 anagram") if cnt_1 == cnt_3: print("1 and 3 anagram") # output # 1 and 2 anagram
12. 使用try-except-else-block模块
except获取异常处理:
a, b = 1,0 try: print(a/b) # exception raised when b is 0 except ZeroDivisionError: print("division by zero") else: print("no exceptions raised") finally: print("Run this always") # output # division by zero # Run this always
13. 使用枚举函数得到key/value对
my_list = ["a", "b", "c", "d", "e"] for index, value in enumerate(my_list): print("{0}: {1}".format(index, value)) # 0: a # 1: b # 2: c # 3: d # 4: e
14.检查对象的内存使用情况
import sys num = 21 print(sys.getsizeof(num)) # In Python 2, 24 # In Python 3, 28
15.合并字典
dict_1 = {"apple": 9, "banana": 6} dict_2 = {"banana": 4, "orange": 8} combined_dict = {**dict_1, **dict_2} print(combined_dict) # Output # {"apple": 9, "banana": 4, "orange": 8}
16.计算执行一段代码所花费的时间
使用time类计算运行一段代码所花费的时间:
import time start_time = time.time() # Code to check follows for i in range(10**5): a, b = 1,2 c = a+ b # Code to check ends end_time = time.time() time_taken_in_micro = (end_time- start_time)*(10**6) print(time_taken_in_micro) # output # 18770.217895507812
17. 列表展开
from iteration_utilities import deepflatten # if you only have one depth nested_list, use this def flatten(l): return [item for sublist in l for item in sublist] l = [[1,2,3],[3]] print(flatten(l)) # [1, 2, 3, 3] # if you don"t know how deep the list is nested l = [[1,2,3],[4,[5],[6,7]],[8,[9,[10]]]] print(list(deepflatten(l, depth=3))) # [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
18. 列表采样
import random my_list = ["a", "b", "c", "d", "e"] num_samples = 2 samples = random.sample(my_list,num_samples) print(samples) # [ "a", "e"] this will have any 2 random values
19.数字化
将整数转化成数字列表
num = 123456 # using map list_of_digits = list(map(int, str(num))) print(list_of_digits) # [1, 2, 3, 4, 5, 6] # using list comprehension list_of_digits = [int(x) for x in str(num)] print(list_of_digits) # [1, 2, 3, 4, 5, 6]
20.检查列表元素的唯一性
检查列表中每个元素是否为唯一的:
def unique(l): if len(l)==len(set(l)): print("All elements are unique") else: print("List has duplicates") unique([1,2,3,4]) # All elements are unique unique([1,1,2,3]) # List has duplicates
以上就是你需要掌握的20个Python常用技巧的详细内容,更多关于Python技巧的资料请关注脚本之家其它相关文章!
X 关闭
X 关闭
- 15G资费不大降!三大运营商谁提供的5G网速最快?中国信通院给出答案
- 2联想拯救者Y70发布最新预告:售价2970元起 迄今最便宜的骁龙8+旗舰
- 3亚马逊开始大规模推广掌纹支付技术 顾客可使用“挥手付”结账
- 4现代和起亚上半年出口20万辆新能源汽车同比增长30.6%
- 5如何让居民5分钟使用到各种设施?沙特“线性城市”来了
- 6AMD实现连续8个季度的增长 季度营收首次突破60亿美元利润更是翻倍
- 7转转集团发布2022年二季度手机行情报告:二手市场“飘香”
- 8充电宝100Wh等于多少毫安?铁路旅客禁止、限制携带和托运物品目录
- 9好消息!京东与腾讯续签三年战略合作协议 加强技术创新与供应链服务
- 10名创优品拟通过香港IPO全球发售4100万股 全球发售所得款项有什么用处?