目录
0.学习目标1.栈的基本概念1.1栈的基本概念1.2栈抽象数据类型1.3栈的应用场景2.栈的实现2.1顺序栈的实现2.1.1栈的初始化2.2链栈的实现2.3栈的不同实现对比3.栈应用3.1顺序栈的应用3.2链栈的应用3.3利用栈基本操作实现复杂算法0. 学习目标
栈和队列是在程序设计中常见的数据类型,从数据结构的角度来讲,栈和队列也是线性表,是操作受限的线性表,它们的基本操作是线性表操作的子集,但从数据类型的角度来讲,它们与线性表又有着巨大的不同。本节将首先介绍栈的定义和其不同实现,并且给出栈的一些实际应用。
通过本节学习,应掌握以下内容:
栈的基本概念及不同实现方法栈基本操作的实现及时间复杂度利用栈的基本操作实现复杂算法1. 栈的基本概念
1.1 栈的基本概念
栈 (Stack) 是限定仅在序列一端执行插入和删除操作的线性表,对于栈而言,可进行操作的一端称为栈顶 (top),而另一端称为栈底 (bottom)。如果栈中不含任何元素则称其为空栈。
栈提供了一种基于在集合中的时间来排序的方式,最近添加的元素靠近顶端,旧元素则靠近底端。最新添加的元素被最先移除,这种排序原则也称为后进先出 (last in first out, LIFO) 或先进后出 (fast in last out, FILO)。
栈在现实中的例子随处可见,如下图所示,球桶中的球构成了一个栈,每次只能从顶部取出一个,放回时也只能置于顶部。假设栈为S = ( a0, a1, … , en)为栈顶元素,栈中元素按的顺序入栈 (push),而栈顶元素是第一个退栈 (pop) 的元素。
通过观察元素的添加和移除顺序,就可以快速理解栈所蕴含的思想。下图展示了栈的入栈和出栈过程,栈中元素的插入顺序和移除顺序恰好是相反的。
1.2 栈抽象数据类型
除了主要的操作(入栈和出栈)外,栈还具有初始化、判空和取栈顶元素等辅助操作。具体而言,栈的抽象数据类型定义如下:
基本操作:
1. __itit__(): 初始化栈
创建一个空栈
2. size(): 求取并返回栈中所含元素的个数 n
若栈为空,则返回整数0
3. isempty(): 判断是否为空栈
判断栈中是否存储元素
4. push(data): 入栈
将元素 data 插入栈顶
5. pop(): 出栈
删除并返回栈顶元素
4. peek(): 取栈顶元素
返回栈顶元素值,但并不删除元素
1.3 栈的应用场景
栈具有广泛的应用场景,例如:
符号的匹配,具体描述参考第3.3小节;函数调用,每个未结束调用的函数都会在函数栈中拥有一块数据区,保存了函数的重要信息,包括函数的局部变量、参数等;后缀表达式求值,计算后缀表达式只需一个用于存放数值的栈,遍历表达式遇到数值则入栈,遇到运算符则出栈两个数值进行计算,并将计算结果入栈,最后栈中保留的唯一值即为表达式结果;网页浏览中的返回按钮,当我们在网页间进行跳转时,这些网址都被存放在一个栈中;编辑器中的撤销序列,与网页浏览中的返回按钮类似,栈保存每步的编辑操作。除了以上应用外,我们在之后的学习中还将看到栈用作许多算法的辅助数据结构。
2. 栈的实现
和线性表一样,栈同样有两种存储表示方式。
2.1 顺序栈的实现
顺序栈是栈的顺序存储结构,其利用一组地址连续的存储单元从栈底到栈顶依次存放。同时使用指针top来指示栈顶元素在顺序栈中的索引,同样顺序栈可以是固定长度和动态长度,当栈满时,定长顺序栈会抛出栈满异常,动态顺序栈则会动态申请空闲空间。
2.1.1 栈的初始化
顺序栈的初始化需要三部分信息:stack 列表用于存储数据元素,max_size 用于存储 stack 列表的最大长度,以及 top 用于记录栈顶元素的索引:
class Stack: def __init__(self, max_size=10): self.max_size = max_size self.stack = self.max_size * [None] self.top = -1
2.1.2 求栈长
由于 top 表示栈顶元素的索引,我们可以据此方便的计算顺序栈中的数据元素数量,即栈长:
def size(self): return self.top + 1
2.1.3 判栈空
根据栈的长度可以很容易的判断栈是否为空栈:
def isempty(self): if self.size() == 0: return True else: return False
2.1.4 判栈满
由于需要提前申请栈空间,因此我们需要能够判断栈是否还有空闲空间:
def isfully(self): if self.size() == self.max_size: return True else: return False
2.1.5 入栈
入栈时,需要首先判断栈中是否还有空闲空间,然后根据栈为定长顺序栈或动态顺序栈,入栈操作稍有不同:
[定长顺序栈的入栈操作] 如果栈满,则引发异常:
def push(self, data): if self.isfully(): raise IndexError("Stack Overflow!") else: self.top += 1 self.stack[self.top_1] = data
[动态顺序栈的入栈操作] 如果栈满,则首先申请新空间:
def resize(self): new_size = 2 * self.max_size new_stack = [None] * new_size for i in range(self.num_items): new_stack[i] = self.items[i] self.stack = new_stack self.max_size = new_size def push(self, data): if self.isfully(): self.resize() else: self.top += 1 self.stack[self.top_1] = data
入栈的时间复杂度为O(1)。这里需要注意的是,虽然当动态顺序栈满时,原栈中的元素需要首先复制到新栈中,然后添加新元素,但根据《顺序表及其操作实现》中顺序表追加操作的介绍,由于n次入栈操作的总时间T(n) 与O(n) 成正比,因此入栈的摊销时间复杂度仍可以认为是O(1)。
2.1.6 出栈
若栈不空,则删除并返回栈顶元素:
def pop(self): if self.isempty(): raise IndexError("Stack Underflow!") else: result = self.stack[self.top] self.top -= 1 return result
2.1.7 求栈顶元素
若栈不空,则只需返回栈顶元素:
def peek(self): if self.isempty(): raise IndexError("Stack Underflow!") else: return self.stack[self.top]
2.2 链栈的实现
栈的另一种存储表示方式是使用链式存储结构,因此也常称为链栈,其中 push 操作是通过在链表头部插入元素来实现的,pop 操作是通过从头部删除节点来实现的。
2.2.1 栈结点
栈的结点实现与链表并无差别:
class Node: def __init__(self, data): self.data = data self.next = None def __str__(self): return str(self.data)
2.2.2 栈的初始化
栈的初始化函数中,使栈顶指针指向 None,并初始化栈长:
class Stack: def __init__(self): self.top = None # 栈中元素数 self.length = 0
2.2.3 求栈长
返回 length 的值用于求取栈的长度,如果没有 length 属性,则需要遍历整个链表才能得到栈长:
def size(self): return self.length
2.2.4 判栈空
根据栈的长度可以很容易的判断栈是否为空栈:
def isempty(self): if self.length == 0: return True else: return False
2.2.5 入栈
入栈时,在栈顶插入新元素即可:
def push(self, data): p = Node(data) p.next = self.top self.top = p self.length += 1
由于插入元素是在链表头部进行的,因此入栈的时间复杂度为O(1),在这种情况下链尾作为栈底 。
2.2.6 出栈
若栈不空,则删除并返回栈顶元素:
def pop(self): if self.isempty(): raise IndexError("Stack Underflow!") ele = self.top.data self.top = self.top.next self.length -= 1 return ele
由于删除元素仅需修改头指针指向其 next 域,因此出栈的时间复杂度同样为O(1)。
2.2.7 求栈顶元素
若栈不空,返回栈顶元素即可,但栈顶元素并不会被删除:
def peek(self): if self.isempty(): raise IndexError("Stack Underflow!") return self.top.data
2.3 栈的不同实现对比
本节我们将对比栈的不同实现之间的异同:
顺序栈
操作的时间复杂度均为O(1),列表的尾部作为栈顶栈满时需要进行动态的扩展,复制原栈元素到新栈中链栈
操作的时间复杂度均为O(1),链表的头部作为栈顶优雅的扩展,无需考虑栈满,需要额外的空间存储指针3. 栈应用
接下来,我们首先测试上述实现的链表,以验证操作的有效性,然后利用实现的基本操作来解决实际算法问题。
3.1 顺序栈的应用
首先初始化一个顺序栈 stack,然后测试相关操作:
# 初始化一个最大长度为4的栈 s = Stack(4) print("栈空?", s.isempty()) for i in range(4): print("入栈元素:", i) s.push(i) print("栈满?", s.isfully()) print("栈顶元素:", s.peek()) print("栈长度为:", s.size()) while not s.isempty(): print("出栈元素:", s.pop())
测试程序输出结果如下:
栈空? True
入栈元素: 0
入栈元素: 1
入栈元素: 2
入栈元素: 3
栈满? True
栈顶元素: 3
栈长度为: 4
出栈元素: 3
出栈元素: 2
出栈元素: 1
出栈元素: 0
3.2 链栈的应用
首先初始化一个链栈 stack,然后测试相关操作:
# 初始化新栈 s = Stack() print("栈空?", s.isempty()) for i in range(4): print("入栈元素:", i) s.push(i) print("栈顶元素:", s.peek()) print("栈长度为:", s.size()) while not s.isempty(): print("出栈元素:", s.pop())
测试程序输出结果如下:
栈空? True
入栈元素: 0
入栈元素: 1
入栈元素: 2
入栈元素: 3
栈顶元素: 3
栈长度为: 4
出栈元素: 3
出栈元素: 2
出栈元素: 1
出栈元素: 0
3.3 利用栈基本操作实现复杂算法
匹配符号是指正确地匹配左右对应的符号(符号允许进行嵌套),不仅每一个左符号都有一个右符号与之对应,而且两个符号的类型也是一致的,下标展示了一些符号串的匹配情况:
符号串 | 是否匹配 |
---|---|
[]()() | 匹配 |
[(())() | 不匹配 |
{([]())} | 匹配 |
(())[]} | 不匹配 |
为了检查符号串的匹配情况,需要遍历符号串,如果字符是 (、[ 或 { 之类的开始分隔符,则将其写入栈中;当遇到诸如 )、] 或 } 等结束分隔符时,则栈顶元素出栈,并将其与当前遍历元素进行比较,如果它们匹配,则继续解析符号串,否则表示不匹配。当遍历完成后,如果栈不为空,则同样表示不匹配:
def isvalid_expression(expression): stack = Stack() symbols = {")":"(", "]":"[", "}":"{"} for s in expression: if s in symbols: if stack: top_element = stack.pop() else: top_element = "#" if symbols[s] != top_element: return False else: stack.push(s) return not stack
由于我们只需要遍历符号串一边,因此算法的时间复杂度为O(n),算法的空间复杂度同样为O(n)。
给定一链表(带有头结点) L : L0→L1→…→Ln,将其重排为:L0→Ln→L1→Ln−1… 。
例如链表中包含 9 个元素,则下图现实了重排前后的链表元素情况:
由于栈的先进后出原则,可以利用栈与原链表的配合进行重排,首次按遍历链表,将每个结点入栈;栈中元素的出栈顺序为原链表结点的逆序,然后交替遍历链表和栈,构建新链表。
def reorder_list(L): p = L.head.next if p == None: return L stack = Stack() while p!= None: stack.push(p) p = p.next l = L.head.next from_head = L.head.next from_stack = True while (from_stack and l != stack.peek() or (not from_stack and l != from_head)): if from_stack: from_head = from_head.next l.next = stack.pop() from_stack = False else: l.next = from_head from_stack = True l = l.next l.next = None
该算法的时间复杂度和空间复杂度均为O(n)。
以上就是Python数据结构之栈详解的详细内容,更多关于Python 栈的资料请关注脚本之家其它相关文章!
X 关闭
X 关闭
- 15G资费不大降!三大运营商谁提供的5G网速最快?中国信通院给出答案
- 2联想拯救者Y70发布最新预告:售价2970元起 迄今最便宜的骁龙8+旗舰
- 3亚马逊开始大规模推广掌纹支付技术 顾客可使用“挥手付”结账
- 4现代和起亚上半年出口20万辆新能源汽车同比增长30.6%
- 5如何让居民5分钟使用到各种设施?沙特“线性城市”来了
- 6AMD实现连续8个季度的增长 季度营收首次突破60亿美元利润更是翻倍
- 7转转集团发布2022年二季度手机行情报告:二手市场“飘香”
- 8充电宝100Wh等于多少毫安?铁路旅客禁止、限制携带和托运物品目录
- 9好消息!京东与腾讯续签三年战略合作协议 加强技术创新与供应链服务
- 10名创优品拟通过香港IPO全球发售4100万股 全球发售所得款项有什么用处?