opencv python模糊影像检测效果
本文采用拉普拉斯算子计算影像的模糊程度,小于阈值的影像被认为是模糊的,从而被移动到专门存放模糊影像的文件夹。本文只使用cv2和shutil库,若想直接使用该脚本需安装这两个库。完整代码如下图所示。
import os import cv2 import shutil import sys # 模糊影像检测函数,阈值默认为0.07 def blurImagesDetection(folder_path, thres=0.07): # 新建一个用于存放模糊影像的文件夹 blurImageDirPath = os.getcwd() + "/blurImages" if not os.path.exists(blurImageDirPath): os.mkdir(blurImageDirPath) # 获取影像文件夹中的影像名列表 imageNameList = os.listdir(folder_path) for imageName in imageNameList: # 得到影像路径 imagePath = os.path.join(folder_path, imageName) # 读取影像为灰度图 img = cv2.imread(imagePath, 0) # 缩小影像,加快处理速度 tiny_img = cv2.resize(img, (400, 300), fx=0, fy=0) # 获取影像尺寸 width, height = tiny_img.shape # 计算影像的模糊程度 blurness = cv2.Laplacian(tiny_img, cv2.CV_64F).var() / (width * height) # 如果影像模糊程度小于阈值就将其移动到存放模糊影像的文件夹中 if blurness < thres: print(imageName + " bulrness:%f 模糊" % (blurness)) blurImagePath = os.path.join(blurImageDirPath, imageName) shutil.move(imagePath, blurImagePath) else: print(imageName + " blurness:%f 不模糊" % (blurness)) if __name__ == "__main__": # 指定要处理的文件夹路径,sys.argv[1]为第一个参数 folder_path = os.getcwd()+"/"+sys.argv[1] # 调用函数 blurImagesDetection(folder_path)
实际运行效果如图所示
所检测到的模糊影像如图所示
到此这篇关于opencv python模糊影像检测的文章就介绍到这了,更多相关opencv python模糊检测内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!
X 关闭
X 关闭
- 15G资费不大降!三大运营商谁提供的5G网速最快?中国信通院给出答案
- 2联想拯救者Y70发布最新预告:售价2970元起 迄今最便宜的骁龙8+旗舰
- 3亚马逊开始大规模推广掌纹支付技术 顾客可使用“挥手付”结账
- 4现代和起亚上半年出口20万辆新能源汽车同比增长30.6%
- 5如何让居民5分钟使用到各种设施?沙特“线性城市”来了
- 6AMD实现连续8个季度的增长 季度营收首次突破60亿美元利润更是翻倍
- 7转转集团发布2022年二季度手机行情报告:二手市场“飘香”
- 8充电宝100Wh等于多少毫安?铁路旅客禁止、限制携带和托运物品目录
- 9好消息!京东与腾讯续签三年战略合作协议 加强技术创新与供应链服务
- 10名创优品拟通过香港IPO全球发售4100万股 全球发售所得款项有什么用处?