目录
前言方法一:使用pause()函数方法二:使用FuncAnimation()函数线性图动画Python中的条形图追赶动画Python中的散点图动画:条形图追赶的水平移动前言
动画是使可视化更具吸引力和用户吸引力的好方法。它帮助我们以有意义的方式展示数据可视化。Python 帮助我们使用现有的强大 Python 库创建动画可视化。Matplotlib是一个非常流行的数据可视化库,通常用于数据的图形表示以及使用内置函数的动画。
使用 Matplotlib 创建动画有两种方法:
使用 pause() 函数使用 FuncAnimation() 函数方法一:使用 pause() 函数
在暂停()的matplotlib库的pyplot模块在功能上用于暂停为参数提到间隔秒。考虑下面的示例,我们将使用 matplotlib 创建一个简单的线性图并在其中显示动画:
创建 2 个数组 X 和 Y,并存储从 1 到 100 的值。
使用 plot() 函数绘制 X 和 Y。
以合适的时间间隔添加 pause() 函数
运行程序,你会看到动画。
Python
from matplotlib import pyplot as plt x = [] y = [] for i in range(100): x.append(i) y.append(i) # 提及 x 和 y 限制以定义其范围 plt.xlim(0, 100) plt.ylim(0, 100) # 绘制图形 plt.plot(x, y, color = "green") plt.pause(0.01) plt.show()
输出 :
同样,你也可以使用 pause() 函数在各种绘图中创建动画。
方法二:使用 FuncAnimation() 函数
这个FuncAnimation() 函数不会自己创建动画,而是从我们传递的一系列图形中创建动画。
语法: FuncAnimation(figure, animation_function, frames=None, init_func=None, fargs=None, save_count=None, *, cache_frame_data=True,
**kwargs)
现在您可以使用 FuncAnimation 函数制作多种类型的动画:
线性图动画
在这个例子中,我们将创建一个简单的线性图,它将显示一条线的动画。同样,使用 FuncAnimation,我们可以创建多种类型的动画视觉表示。我们只需要在一个函数中定义我们的动画,然后用合适的参数将它传递给FuncAnimation。
Python
from matplotlib import pyplot as plt from matplotlib.animation import FuncAnimation import numpy as np x = [] y = [] figure, ax = plt.subplots() # 设置 x 和 y 轴的限制 ax.set_xlim(0, 100) ax.set_ylim(0, 12) # 绘制单个图形 line, = ax.plot(0, 0) def animation_function(i): x.append(i * 15) y.append(i) line.set_xdata(x) line.set_ydata(y) return line, animation = FuncAnimation(figure, func = animation_function, frames = np.arange(0, 10, 0.1), interval = 10) plt.show()
输出:
Python 中的条形图追赶动画
在此示例中,我们将创建一个简单的条形图动画,它将显示每个条形的动画。
Python
from matplotlib import pyplot as plt from matplotlib.animation import FuncAnimation, writers import numpy as np plt.rcParams["font.sans-serif"] = ["Microsoft YaHei"] fig = plt.figure(figsize = (7,5)) axes = fig.add_subplot(1,1,1) axes.set_ylim(0, 300) palette = ["blue", "red", "green", "darkorange", "maroon", "black"] y1, y2, y3, y4, y5, y6 = [], [], [], [], [], [] def animation_function(i): y1 = i y2 = 6 * i y3 = 3 * i y4 = 2 * i y5 = 5 * i y6 = 3 * i plt.xlabel("国家") plt.ylabel("国家GDP") plt.bar(["印度", "中国", "德国", "美国", "加拿大", "英国"], [y1, y2, y3, y4, y5, y6], color = palette) plt.title("条形图动画") animation = FuncAnimation(fig, animation_function, interval = 50) plt.show()
输出:
Python 中的散点图动画:
在这个例子中,我们将使用随机函数在 python 中动画散点图。我们将遍历animation_func并在迭代时绘制 x 和 y 轴的随机值。
from matplotlib import pyplot as plt from matplotlib.animation import FuncAnimation import random import numpy as np x = [] y = [] colors = [] fig = plt.figure(figsize=(7,5)) def animation_func(i): x.append(random.randint(0,100)) y.append(random.randint(0,100)) colors.append(np.random.rand(1)) area = random.randint(0,30) * random.randint(0,30) plt.xlim(0,100) plt.ylim(0,100) plt.scatter(x, y, c = colors, s = area, alpha = 0.5) animation = FuncAnimation(fig, animation_func, interval = 100) plt.show()
输出:
条形图追赶的水平移动
在这里,我们将使用城市数据集中的最高人口绘制条形图竞赛。
不同的城市会有不同的条形图,条形图追赶将从 1990 年到 2018 年迭代。
我从人口最多的数据集中选择了最高城市的国家。
需要用到的数据集可以从这里下载:city_populations
Python
import pandas as pd import matplotlib.pyplot as plt import matplotlib.ticker as ticker from matplotlib.animation import FuncAnimation plt.rcParams["font.sans-serif"] = ["Microsoft YaHei"] df = pd.read_csv("city_populations.csv", usecols=["name", "group", "year", "value"]) colors = dict(zip(["India","Europe","Asia", "Latin America","Middle East", "North America","Africa"], ["#adb0ff", "#ffb3ff", "#90d595", "#e48381", "#aafbff", "#f7bb5f", "#eafb50"])) group_lk = df.set_index("name")["group"].to_dict() def draw_barchart(year): dff = df[df["year"].eq(year)].sort_values(by="value", ascending=True).tail(10) ax.clear() ax.barh(dff["name"], dff["value"], color=[colors[group_lk[x]] for x in dff["name"]]) dx = dff["value"].max() / 200 for i, (value, name) in enumerate(zip(dff["value"], dff["name"])): ax.text(value-dx, i, name, size=14, weight=600, ha="right", va="bottom") ax.text(value-dx, i-.25, group_lk[name], size=10, color="#444444", ha="right", va="baseline") ax.text(value+dx, i, f"{value:,.0f}", size=14, ha="left", va="center") ax.text(1, 0.4, year, transform=ax.transAxes, color="#777777", size=46, ha="right", weight=800) ax.text(0, 1.06, "Population (thousands)", transform=ax.transAxes, size=12, color="#777777") ax.xaxis.set_major_formatter(ticker.StrMethodFormatter("{x:,.0f}")) ax.xaxis.set_ticks_position("top") ax.tick_params(axis="x", colors="#777777", labelsize=12) ax.set_yticks([]) ax.margins(0, 0.01) ax.grid(which="major", axis="x", linestyle="-") ax.set_axisbelow(True) ax.text(0, 1.12, "从 1500 年到 2018 年世界上人口最多的城市", transform=ax.transAxes, size=24, weight=600, ha="left") ax.text(1, 0, "by haiyong.site | 海拥", transform=ax.transAxes, ha="right", color="#777777", bbox=dict(facecolor="white", alpha=0.8, edgecolor="white")) plt.box(False) plt.show() fig, ax = plt.subplots(figsize=(15, 8)) animator = FuncAnimation(fig, draw_barchart, frames = range(1990, 2019)) plt.show()
输出:
以上就是详解在Python中创建条形图追赶动画的详细内容,更多关于Python动画的资料请关注脚本之家其它相关文章!
X 关闭
X 关闭
- 15G资费不大降!三大运营商谁提供的5G网速最快?中国信通院给出答案
- 2联想拯救者Y70发布最新预告:售价2970元起 迄今最便宜的骁龙8+旗舰
- 3亚马逊开始大规模推广掌纹支付技术 顾客可使用“挥手付”结账
- 4现代和起亚上半年出口20万辆新能源汽车同比增长30.6%
- 5如何让居民5分钟使用到各种设施?沙特“线性城市”来了
- 6AMD实现连续8个季度的增长 季度营收首次突破60亿美元利润更是翻倍
- 7转转集团发布2022年二季度手机行情报告:二手市场“飘香”
- 8充电宝100Wh等于多少毫安?铁路旅客禁止、限制携带和托运物品目录
- 9好消息!京东与腾讯续签三年战略合作协议 加强技术创新与供应链服务
- 10名创优品拟通过香港IPO全球发售4100万股 全球发售所得款项有什么用处?