Python matplotlib seaborn绘图教程详解
来源:脚本之家    时间:2022-03-14 09:56:42
目录
一、seaborn概述二、数据整理01折线图02柱形图03直方图三、绘图01设定调色盘02柱状图03技术图04点图05箱型图06小提琴图

一、seaborn概述

Seaborn是在matplotlib的基础上进行了更高级的API封装,从而使得作图更加容易,在大多数情况下使用seaborn就能做出很具有吸引力的图。详情请查阅官网:seaborn

二、数据整理

import seaborn as sns
import numpy as np 
import matplotlib as mpl
from matplotlib import pyplot as plt 
import pandas as pd 
from datetime import datetime,timedelta
%matplotlib inline
plt.rcParams["font.sans-serif"]=["SimHei"] # 用来正常显示中文标签
plt.rcParams["axes.unicode_minus"]=False # 用来正常显示负号
from datetime import datetime 
films=["穿过寒冬拥抱你","反贪风暴5:最终章","李茂扮太子","误杀2","以年为单位的恋爱","黑客帝国:矩阵重启","雄狮少年","魔法满屋","汪汪队立大功大电影","爱情神话"]
regions=["中国","英国","澳大利亚","美国","美国","中国","英国","澳大利亚","美国","美国"]
bos=["61,181","44,303","42,439","22,984","13,979","61,181","44,303","41,439","20,984","19,979"]
persons=["31","23","56","17","9","31","23","56","17","9"]
prices=["51","43","56","57","49","51","43","56","57","49"]
showdate=["2022-12-03","2022-12-05","2022-12-01","2022-12-02","2022-11-05","2022-12-03","2022-12-05","2022-12-01","2022-12-02","2022-11-05"]
ftypes=["剧情","动作","喜剧","剧情","剧情","爱情","动作","动画","动画","动画"]
points=["8.1","9.0","7.9","6.7","3.8","8.1","9.0","7.9","6.7","3.8"]
filmdescript={
    "ftypes":ftypes,
    "bos":bos,
    "prices":prices,
    "persons":persons,
    "regions":regions,
    "showdate":showdate,
    "points":points
}
import numpy as np
import pandas as pd
cnbo2021top5=pd.DataFrame(filmdescript,index=films)
cnbo2021top5[["prices","persons"]]=cnbo2021top5[["prices","persons"]].astype(int)
cnbo2021top5["bos"]=cnbo2021top5["bos"].str.replace(",","").astype(int)
cnbo2021top5["showdate"]=cnbo2021top5["showdate"].astype("datetime64")
cnbo2021top5["points"]=cnbo2021top5["points"].apply(lambda x:float(x) if x!="" else 0)
cnbo2021top5
# 常用调色盘
r_hex = "#dc2624"     # red,       RGB = 220,38,36	
dt_hex = "#2b4750"    # dark teal, RGB = 43,71,80	
tl_hex = "#45a0a2"    # teal,      RGB = 69,160,162	
r1_hex = "#e87a59"    # red,       RGB = 232,122,89	
tl1_hex = "#7dcaa9"   # teal,      RGB = 125,202,169	
g_hex = "#649E7D"     # green,     RGB = 100,158,125	
o_hex = "#dc8018"     # orange,    RGB = 220,128,24	
tn_hex = "#C89F91"    # tan,       RGB = 200,159,145	
g50_hex = "#6c6d6c"   # grey-50,   RGB = 108,109,108	
bg_hex = "#4f6268"    # blue grey, RGB = 79,98,104	
g25_hex = "#c7cccf"   # grey-25,   RGB = 199,204,207
color=["#dc2624" ,"#2b4750","#45a0a2","#e87a59","#7dcaa9","#649E7D","#dc8018","#C89F91","#6c6d6c","#4f6268","#c7cccf"]
sns.set_palette(color)

01 折线图

def sinplot(flip=1):
    x = np.linspace(0, 14, 100)
    for i in range(1, 7):
        plt.plot(x, np.sin(x + i * .5) * (7 - i) * flip)
sinplot()
# 对两种画图进行比较
fig = plt.figure()
sns.set()
sinplot()
plt.rcParams["font.sans-serif"]=["SimHei"] # 用来正常显示中文标签
plt.rcParams["axes.unicode_minus"]=False # 用来正常显示负号
plt.figure(figsize=(14,8))
plt.title("中国电影票房2021top10")
plt.xlabel("电影名称")
plt.ylabel("电影票房")
sns.lineplot(data=cnbo2021top5[["bos"]])
plt.xticks(rotation=45)

02 柱形图

cnbo2021top5ftgb=cnbo2021top5.groupby(["ftypes"])["bos","persons","prices","points"].mean()
cnbo2021top5ftgb=cnbo2021top5ftgb.reset_index().replace()
cnbo2021top5ftgb
### 02 条形图
plt.figure(figsize=(14,8))
plt.title("中国电影票房2021top10")
sns.barplot(x=cnbo2021top5ftgb["ftypes"],y=cnbo2021top5ftgb["persons"])
plt.xlabel("电影类型")
plt.ylabel("场均人次")
plt.xticks(rotation=45)
plt.show()

03 直方图

### 03 直方图
plt.figure(figsize=(14,8))
plt.title("中国电影票房2021top10")
sns.histplot(x=cnbo2021top5["bos"],bins=15) # x=cnbo2021top5ftgb["ftypes"],y=cnbo2021top5ftgb["persons"]
plt.xlabel("电影类型")
plt.ylabel("场均人次")
plt.xticks(rotation=45)
plt.show()

三、绘图

上面的数据只有十部电影,而下面的数据是我整理出来的电影数据:

Excel:300部电影数据整理

import pandas as pd 
cnboo=pd.read_excel("cnboNPPD1.xlsx")
cnboo

01 设定调色盘

# 设定调色盘
sns.set_palette(color)
sns.palplot(sns.color_palette(color,11)) # 表示11种颜色

02 柱状图

sns.set_palette(color)
sns.palplot(sns.color_palette(color,11))
plt.figure(figsize=(25,20))
plt.title("电影票房")
plt.xticks(rotation=45)
sns.barplot(x="TYPE",
            y="PRICE",
            hue="TYPE",
            data=cnboo)

03 技术图

sns.set_palette(color)
sns.palplot(sns.color_palette(color,11))
plt.figure(figsize=(15,10))
plt.title("电影票房")
plt.xticks(rotation=45)
sns.countplot(x="TYPE",data=cnboo)

04 点图

sns.set_palette(color)
sns.palplot(sns.color_palette(color,11))
plt.figure(figsize=(15,10))
plt.title("电影票房")
plt.xticks(rotation=45)
sns.pointplot(x="TYPE",y="PRICE",data=cnboo)
plt.show()
sns.set_palette(color)
sns.palplot(sns.color_palette(color,11))
plt.figure(figsize=(25,10))
plt.title("电影票房")
plt.xticks(rotation=45)
sns.pointplot(x="TYPE",y="PRICE",hue="REGION",data=cnboo)
plt.show()

05 箱型图

### 05 箱型图
sns.set_palette(color)
sns.palplot(sns.color_palette(color,11))
plt.figure(figsize=(35,10))
plt.title("电影票房")
plt.xticks(rotation=45)
sns.boxplot(x="TYPE",y="PERSONS",hue="REGION",data=cnboo) # ,markers=["^","o"],linestyles=["-","--"]
plt.show()
# 图中的单个点代表在此数据当中的异常值

06 小提琴图

### 06 小提琴图
sns.set_palette(color)
sns.palplot(sns.color_palette(color,11))
plt.figure(figsize=(35,10))
plt.title("电影票房")
plt.xticks(rotation=45)
sns.violinplot(x="TYPE",y="PRICE",hue="REGION",data=cnboo) # ,markers=["^","o"],linestyles=["-","--"]
plt.show()

绘制横着的小提琴图:

sns.set_palette(color)
sns.palplot(sns.color_palette(color,11))
plt.figure(figsize=(35,10))
plt.title("电影票房")
plt.xticks(rotation=45)
sns.violinplot(x="PERSONS",y="PRICE",hue="REGION",data=cnboo,orient="h")
plt.show()

到此这篇关于Python matplotlib seaborn绘图教程详解的文章就介绍到这了,更多相关Python seaborn绘图内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

关键词: 数据整理 中国电影 澳大利亚 希望大家 爱情神话

X 关闭

X 关闭