Python实现摄像头实时换脸详解
目录
环境与效果基本原理完整源码环境与效果
python3.9.6
pycharm 2021
库环境:
dlib
opencv-python
视频图片效果如下:
视频链接
摄像头实时换脸,老师都不认识我了!!
基本原理
使用dlib的shape_predictor_68_face_landmarks.dat模型获取一张有正脸的图片(1.png)和摄像头的自己的68个人脸特征点。
根据人脸特征点获取分别获取人脸掩模
对第一个图片仿射变换使其脸部对准摄像头图片中的脸部得到新的图片
对人脸掩模执行相同的操作仿射
将两个性的得到图取并集(不能让别的地方空了)
用opencv对两上面操作,对仿射变换后的a图片和摄像头图片进行泊松融合
完整源码
# -*- coding: utf-8 -*- import cv2 import dlib import numpy as np detector = dlib.get_frontal_face_detector() # dlib的正向人脸检测器 predictor = dlib.shape_predictor(r"shape_predictor_68_face_landmarks.dat") # dlib的人脸形状检测器 def get_image_size(image): """ 获取图片大小(高度,宽度) :param image: image :return: (高度,宽度) """ image_size = (image.shape[0], image.shape[1]) return image_size def get_face_landmarks(image, face_detector, shape_predictor): """ 获取人脸标志,68个特征点 :param image: image :param face_detector: dlib.get_frontal_face_detector :param shape_predictor: dlib.shape_predictor :return: np.array([[],[]]), 68个特征点 """ dets = face_detector(image, 1) shape = shape_predictor(image, dets[0]) face_landmarks = np.array([[p.x, p.y] for p in shape.parts()]) return face_landmarks def get_face_mask(image_size, face_landmarks): """ 获取人脸掩模 :param image_size: 图片大小 :param face_landmarks: 68个特征点 :return: image_mask, 掩模图片 """ mask = np.zeros(image_size, dtype=np.uint8) points = np.concatenate([face_landmarks[0:16], face_landmarks[26:17:-1]]) cv2.fillPoly(img=mask, pts=[points], color=255) return mask def get_affine_image(image1, image2, face_landmarks1, face_landmarks2): """ 获取图片1仿射变换后的图片 :param image1: 图片1, 要进行仿射变换的图片 :param image2: 图片2, 只要用来获取图片大小,生成与之大小相同的仿射变换图片 :param face_landmarks1: 图片1的人脸特征点 :param face_landmarks2: 图片2的人脸特征点 :return: 仿射变换后的图片 """ three_points_index = [18, 8, 25] M = cv2.getAffineTransform(face_landmarks1[three_points_index].astype(np.float32), face_landmarks2[three_points_index].astype(np.float32)) dsize = (image2.shape[1], image2.shape[0]) affine_image = cv2.warpAffine(image1, M, dsize) return affine_image.astype(np.uint8) def get_mask_center_point(image_mask): """ 获取掩模的中心点坐标 :param image_mask: 掩模图片 :return: 掩模中心 """ image_mask_index = np.argwhere(image_mask > 0) miny, minx = np.min(image_mask_index, axis=0) maxy, maxx = np.max(image_mask_index, axis=0) center_point = ((maxx + minx) // 2, (maxy + miny) // 2) return center_point def get_mask_union(mask1, mask2): """ 获取两个掩模掩盖部分的并集 :param mask1: mask_image, 掩模1 :param mask2: mask_image, 掩模2 :return: 两个掩模掩盖部分的并集 """ mask = np.min([mask1, mask2], axis=0) # 掩盖部分并集 mask = ((cv2.blur(mask, (5, 5)) == 255) * 255).astype(np.uint8) # 缩小掩模大小 mask = cv2.blur(mask, (3, 3)).astype(np.uint8) # 模糊掩模 return mask def skin_color_adjustment(im1, im2, mask=None): """ 肤色调整 :param im1: 图片1 :param im2: 图片2 :param mask: 人脸 mask. 如果存在,使用人脸部分均值来求肤色变换系数;否则,使用高斯模糊来求肤色变换系数 :return: 根据图片2的颜色调整的图片1 """ if mask is None: im1_ksize = 55 im2_ksize = 55 im1_factor = cv2.GaussianBlur(im1, (im1_ksize, im1_ksize), 0).astype(np.float) im2_factor = cv2.GaussianBlur(im2, (im2_ksize, im2_ksize), 0).astype(np.float) else: im1_face_image = cv2.bitwise_and(im1, im1, mask=mask) im2_face_image = cv2.bitwise_and(im2, im2, mask=mask) im1_factor = np.mean(im1_face_image, axis=(0, 1)) im2_factor = np.mean(im2_face_image, axis=(0, 1)) im1 = np.clip((im1.astype(np.float) * im2_factor / np.clip(im1_factor, 1e-6, None)), 0, 255).astype(np.uint8) return im1 def main(): im1 = cv2.imread("1.png") # face_image im1 = cv2.resize(im1, (600, im1.shape[0] * 600 // im1.shape[1])) landmarks1 = get_face_landmarks(im1, detector, predictor) # 68_face_landmarks if landmarks1 is None: print("{}:检测不到人脸".format(image_face_path)) exit(1) im1_size = get_image_size(im1) # 脸图大小 im1_mask = get_face_mask(im1_size, landmarks1) # 脸图人脸掩模 cam = cv2.VideoCapture(0) while True: ret_val, im2 = cam.read() # camera_image landmarks2 = get_face_landmarks(im2, detector, predictor) # 68_face_landmarks if landmarks2 is not None: im2_size = get_image_size(im2) # 摄像头图片大小 im2_mask = get_face_mask(im2_size, landmarks2) # 摄像头图片人脸掩模 affine_im1 = get_affine_image(im1, im2, landmarks1, landmarks2) # im1(脸图)仿射变换后的图片 affine_im1_mask = get_affine_image(im1_mask, im2, landmarks1, landmarks2) # im1(脸图)仿射变换后的图片的人脸掩模 union_mask = get_mask_union(im2_mask, affine_im1_mask) # 掩模合并 affine_im1 = skin_color_adjustment(affine_im1, im2, mask=union_mask) # 肤色调整 point = get_mask_center_point(affine_im1_mask) # im1(脸图)仿射变换后的图片的人脸掩模的中心点 seamless_im = cv2.seamlessClone(affine_im1, im2, mask=union_mask, p=point, flags=cv2.NORMAL_CLONE) # 进行泊松融合 cv2.imshow("seamless_im", seamless_im) else: cv2.imshow("seamless_im", im2) if cv2.waitKey(1) == 27: # 按Esc退出 break cv2.destroyAllWindows() if __name__ == "__main__": main()
到此这篇关于Python实现摄像头实时换脸详解的文章就介绍到这了,更多相关Python实时换脸内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!
X 关闭
X 关闭
- 15G资费不大降!三大运营商谁提供的5G网速最快?中国信通院给出答案
- 2联想拯救者Y70发布最新预告:售价2970元起 迄今最便宜的骁龙8+旗舰
- 3亚马逊开始大规模推广掌纹支付技术 顾客可使用“挥手付”结账
- 4现代和起亚上半年出口20万辆新能源汽车同比增长30.6%
- 5如何让居民5分钟使用到各种设施?沙特“线性城市”来了
- 6AMD实现连续8个季度的增长 季度营收首次突破60亿美元利润更是翻倍
- 7转转集团发布2022年二季度手机行情报告:二手市场“飘香”
- 8充电宝100Wh等于多少毫安?铁路旅客禁止、限制携带和托运物品目录
- 9好消息!京东与腾讯续签三年战略合作协议 加强技术创新与供应链服务
- 10名创优品拟通过香港IPO全球发售4100万股 全球发售所得款项有什么用处?