Python必备技巧之集合Set的使用
来源:脚本之家    时间:2022-03-24 12:31:49
目录
定义一个集合集合的大小和成员资格集合的9种操作计算集合并集计算集合交集计算集合之间差异计算集合间对称差计算后集合中是否有包含前集合的元素计算一个集合是否是另一个集合的子集计算一个集合是否是另一个集合的真子集计算一个集合是否是另一个集合的超集计算一个集合是否是另一个集合的正确超集集合的9种修改update计算并集intersection_update 计算交集difference_update 按差异修改被处理集合symmetric_difference_update 按对称差修改被处理集合add 元素添加到集合中remove 集合中移除一个元素discard 集合中移除一个元素pop 集合中移除一个随机元素clear 清空集合被冻结集合

在数学中,对集合的严格定义可能是抽象的且难以掌握。但实际上可以将集合简单地认为是定义明确的不同对象的集合,通常称为元素或成员。

Python 提供了一个内置的集合类型来将对象分组到一个集合中。集合与其他对象类型的区别在于可以对执行的独特操作。

定义一个集合

集合是无序的,并且元素是唯一的,集合本身可以修改,但集合中包含的元素必须是不可变类型。

构建集合的方式

# 构建的set数据会自动进行去重
x = set()
# list方式
>>> x = set(["foo", "bar", "baz", "foo", "qux"])
>>> x
{"qux", "foo", "bar", "baz"}
# tuple方式
>>> x = set(("foo", "bar", "baz", "foo", "qux"))
>>> x
{"qux", "foo", "bar", "baz"}
# 字符串方式
>>> s = "quux"
>>> list(s)
["q", "u", "u", "x"]
>>> set(s)
{"x", "u", "q"}

集合元素set后自动排序并且元素必须是不可变的。

>>> x = {42, "foo", (1, 2, 3), 3.14159}
>>> x
{42, "foo", 3.14159, (1, 2, 3)}
# list和dict不能被set
>>> a = [1, 2, 3]
>>> {a}
Traceback (most recent call last):
  File "", line 1, in 
    {a}
TypeError: unhashable type: "list"

>>> d = {"a": 1, "b": 2}
>>> {d}
Traceback (most recent call last):
  File "", line 1, in 
    {d}
TypeError: unhashable type: "dict"

集合的大小和成员资格

方法 len() 、in 、 not in 的应用。

>>> x = {"foo", "bar", "baz"}
>>> len(x)
3
>>> "bar" in x
True
>>> "qux" in x
False

集合的9种操作

计算集合并集

# x1.union(x2[, x3 ...])
# x1 | x2 [| x3 ...]
>>> x1 = {"foo", "bar", "baz"}
>>> x2 = {"baz", "qux", "quux"}
>>> x1 | x2
{"baz", "quux", "qux", "bar", "foo"}
>>> x1.union(x2)
{"baz", "quux", "qux", "bar", "foo"}

# 更多的集合并集操作
>>> a = {1, 2, 3, 4}
>>> b = {2, 3, 4, 5}
>>> c = {3, 4, 5, 6}
>>> d = {4, 5, 6, 7}
>>> a.union(b, c, d)
{1, 2, 3, 4, 5, 6, 7}
>>> a | b | c | d
{1, 2, 3, 4, 5, 6, 7}

计算集合交集

# x1.intersection(x2[, x3 ...])
# x1 & x2 [& x3 ...]
>>> x1 = {"foo", "bar", "baz"}
>>> x2 = {"baz", "qux", "quux"}
>>> x1.intersection(x2)
{"baz"}
>>> x1 & x2
{"baz"}

# 更多的集合交集操作
>>> a = {1, 2, 3, 4}
>>> b = {2, 3, 4, 5}
>>> c = {3, 4, 5, 6}
>>> d = {4, 5, 6, 7}
>>> a.intersection(b, c, d)
{4}
>>> a & b & c & d
{4}

计算集合之间差异

# x1.difference(x2[, x3 ...])
# x1 - x2 [- x3 ...]
>>> x1 = {"foo", "bar", "baz"}
>>> x2 = {"baz", "qux", "quux"}
>>> x1.difference(x2)
{"foo", "bar"}
>>> x1 - x2
{"foo", "bar"}

# 更多的集合差异操作
>>> a = {1, 2, 3, 30, 300}
>>> b = {10, 20, 30, 40}
>>> c = {100, 200, 300, 400}
>>> a.difference(b, c)
{1, 2, 3}
>>> a - b - c
{1, 2, 3}

计算集合间对称差

# x1.symmetric_difference(x2)
# x1 ^ x2 [^ x3 ...]
>>> x1 = {"foo", "bar", "baz"}
>>> x2 = {"baz", "qux", "quux"}
>>> x1.symmetric_difference(x2)
{"foo", "qux", "quux", "bar"}
>>> x1 ^ x2
{"foo", "qux", "quux", "bar"}

# 更多的集合对称差操作
>>> a = {1, 2, 3, 4, 5}
>>> b = {10, 2, 3, 4, 50}
>>> c = {1, 50, 100}
>>> a ^ b ^ c
{100, 5, 10}

计算后集合中是否有包含前集合的元素

# x1.isdisjoint(x2)
>>> x1 = {"foo", "bar", "baz"}
>>> x2 = {"baz", "qux", "quux"}
>>> x1.isdisjoint(x2)
False
>>> x2 - {"baz"}
{"quux", "qux"}
>>> x1.isdisjoint(x2 - {"baz"})
True

# x1.isdisjoint(x2)是True,那么x1 & x2是空集
>>> x1 = {1, 3, 5}
>>> x2 = {2, 4, 6}
>>> x1.isdisjoint(x2)
True
>>> x1 & x2
set()

计算一个集合是否是另一个集合的子集

# x1.issubset(x2)
# x1 <= x2
>>> x1 = {"foo", "bar", "baz"}
>>> x1.issubset({"foo", "bar", "baz", "qux", "quux"})
True
>>> x2 = {"baz", "qux", "quux"}
>>> x1 <= x2
False
# 一个集合被认为是它自身的一个子集
>>> x = {1, 2, 3, 4, 5}
>>> x.issubset(x)
True
>>> x <= x
True

计算一个集合是否是另一个集合的真子集

# x1 < x2
>>> x1 = {"foo", "bar"}
>>> x2 = {"foo", "bar", "baz"}
>>> x1 < x2
True
>>> x1 = {"foo", "bar", "baz"}
>>> x2 = {"foo", "bar", "baz"}
>>> x1 < x2
False
# 子集与真子集的判断
>>> x = {1, 2, 3, 4, 5}
>>> x <= x
True
>>> x < x
False

计算一个集合是否是另一个集合的超集

# x1.issuperset(x2)
# x1 >= x2
>>> x1 = {"foo", "bar", "baz"}
>>> x1.issuperset({"foo", "bar"})
True
>>> x2 = {"baz", "qux", "quux"}
>>> x1 >= x2
False

# 集合被认为是本身的一个子集,默认为自身超集
>>> x = {1, 2, 3, 4, 5}
>>> x.issuperset(x)
True
>>> x >= x
True

计算一个集合是否是另一个集合的正确超集

# x1 > x2
>>> x1 = {"foo", "bar", "baz"}
>>> x2 = {"foo", "bar"}
>>> x1 > x2
True
>>> x1 = {"foo", "bar", "baz"}
>>> x2 = {"foo", "bar", "baz"}
>>> x1 > x2
False
# 集合不是其自身的正确超集
>>> x = {1, 2, 3, 4, 5}
>>> x > x
False

集合的9种修改

尽管集合中包含的元素必须是不可变类型,但集合本身可以修改。

update计算并集

# x1.update(x2[, x3 ...])
# x1 |= x2 [| x3 ...]
>>> x1 = {"foo", "bar", "baz"}
>>> x2 = {"foo", "baz", "qux"}
>>> x1 |= x2
>>> x1
{"qux", "foo", "bar", "baz"}
>>> x1.update(["corge", "garply"])
>>> x1
{"qux", "corge", "garply", "foo", "bar", "baz"}

intersection_update 计算交集

# x1.intersection_update(x2[, x3 ...])
# x1 &= x2 [& x3 ...]
>>> x1 = {"foo", "bar", "baz"}
>>> x2 = {"foo", "baz", "qux"}
>>> x1 &= x2
>>> x1
{"foo", "baz"}
>>> x1.intersection_update(["baz", "qux"])
>>> x1
{"baz"}

difference_update 按差异修改被处理集合

>>> x1 = {"foo", "bar", "baz"}
>>> x2 = {"foo", "baz", "qux"}
>>> x1 -= x2
>>> x1
{"bar"}
>>> x1.difference_update(["foo", "bar", "qux"])
>>> x1
set()

symmetric_difference_update 按对称差修改被处理集合

# x1.symmetric_difference_update(x2)
# x1 ^= x2
>>> x1 = {"foo", "bar", "baz"}
>>> x2 = {"foo", "baz", "qux"}
>>> x1 ^= x2
>>> x1
{"bar", "qux"}
>>> 
>>> x1.symmetric_difference_update(["qux", "corge"])
>>> x1
{"bar", "corge"}

add 元素添加到集合中

>>> x = {"foo", "bar", "baz"}
>>> x.add("qux")
>>> x
{"bar", "baz", "foo", "qux"}

remove 集合中移除一个元素

>>> x = {"foo", "bar", "baz"}
>>> x.remove("baz")
>>> x
{"bar", "foo"}
# 如果元素步存在则引发异常
>>> x.remove("qux")
Traceback (most recent call last):
  File "", line 1, in 
    x.remove("qux")
KeyError: "qux"

discard 集合中移除一个元素

>>> x = {"foo", "bar", "baz"}
>>> x.discard("baz")
>>> x
{"bar", "foo"}
>>> x.discard("qux")
>>> x
{"bar", "foo"}

pop 集合中移除一个随机元素

>>> x = {"foo", "bar", "baz"}
>>> x.pop()
"bar"
>>> x
{"baz", "foo"}
>>> x.pop()
"baz"
>>> x
{"foo"}
>>> x.pop()
"foo"
>>> x
set()
>>> x.pop()
Traceback (most recent call last):
  File "", line 1, in 
    x.pop()
KeyError: "pop from an empty set"

clear 清空集合

>>> x = {"foo", "bar", "baz"}
>>> x
{"foo", "bar", "baz"}
>>> 
>>> x.clear()
>>> x
set()

被冻结集合

freezeset 为 Python的内置类型,不可变、不可操作。

>>> x = frozenset(["foo", "bar", "baz"])
>>> x
frozenset({"foo", "baz", "bar"})
>>> len(x)
3
>>> x & {"baz", "qux", "quux"}
frozenset({"baz"})

尝试修改 freezeset 的方法会失败

>>> x = frozenset(["foo", "bar", "baz"])
>>> x.add("qux")
Traceback (most recent call last):
  File "", line 1, in 
    x.add("qux")
AttributeError: "frozenset" object has no attribute "add"
>>> x.pop()
Traceback (most recent call last):
  File "", line 1, in 
    x.pop()
AttributeError: "frozenset" object has no attribute "pop"
>>> x.clear()
Traceback (most recent call last):
  File "", line 1, in 
    x.clear()
AttributeError: "frozenset" object has no attribute "clear"
>>> x
frozenset({"foo", "bar", "baz"})

以上就是Python必备技巧之集合Set的使用的详细内容,更多关于Python集合Set的资料请关注脚本之家其它相关文章!

关键词: 成员资格 相关文章 集合类型 通常称为 提供了一个

X 关闭

X 关闭