TensorFlow实现简单线性回归
来源:脚本之家    时间:2022-03-30 18:02:20

本文实例为大家分享了TensorFlow实现简单线性回归的具体代码,供大家参考,具体内容如下

简单的一元线性回归

一元线性回归公式:

其中x是特征:[x1,x2,x3,…,xn,]T
w是权重,b是偏置值

代码实现

导入必须的包

import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np
import os

# 屏蔽warning以下的日志信息
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"

产生模拟数据

def generate_data():
    x = tf.constant(np.array([i for i in range(0, 100, 5)]).reshape(-1, 1), tf.float32)
    y = tf.add(tf.matmul(x, [[1.3]]) + 1, tf.random_normal([20, 1], stddev=30))
    return x, y

x是100行1列的数据,tf.matmul是矩阵相乘,所以权值设置成二维的。
设置的w是1.3, b是1

实现回归

def myregression():
    """
    自实现线性回归
    :return:
    """
    x, y = generate_data()
    #     建立模型  y = x * w + b
    # w 1x1的二维数据
    w = tf.Variable(tf.random_normal([1, 1], mean=0.0, stddev=1.0), name="weight_a")
    b = tf.Variable(0.0, name="bias_b")

    y_predict = tf.matmul(x, a) + b

    # 建立损失函数
    loss = tf.reduce_mean(tf.square(y_predict - y))
    
    # 训练
    train_op = tf.train.GradientDescentOptimizer(0.1).minimize(loss=loss)

    # 初始化全局变量
    init_op = tf.global_variables_initializer()

  
    with tf.Session() as sess:
        sess.run(init_op)
        print("初始的权重:%f偏置值:%f" % (a.eval(), b.eval()))
    
        # 训练优化
        for i in range(1, 100):
            sess.run(train_op)
            print("第%d次优化的权重:%f偏置值:%f" % (i, a.eval(), b.eval()))
        # 显示回归效果
        show_img(x.eval(), y.eval(), y_predict.eval())

使用matplotlib查看回归效果

def show_img(x, y, y_pre):
    plt.scatter(x, y)
    plt.plot(x, y_pre)
    plt.show()

完整代码

import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np
import os

os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"


def generate_data():
    x = tf.constant(np.array([i for i in range(0, 100, 5)]).reshape(-1, 1), tf.float32)
    y = tf.add(tf.matmul(x, [[1.3]]) + 1, tf.random_normal([20, 1], stddev=30))
    return x, y


def myregression():
    """
    自实现线性回归
    :return:
    """
    x, y = generate_data()
    # 建立模型  y = x * w + b
    w = tf.Variable(tf.random_normal([1, 1], mean=0.0, stddev=1.0), name="weight_a")
    b = tf.Variable(0.0, name="bias_b")

    y_predict = tf.matmul(x, w) + b

    # 建立损失函数
    loss = tf.reduce_mean(tf.square(y_predict - y))
    # 训练
    train_op = tf.train.GradientDescentOptimizer(0.0001).minimize(loss=loss)

    init_op = tf.global_variables_initializer()

    with tf.Session() as sess:
        sess.run(init_op)
        print("初始的权重:%f偏置值:%f" % (w.eval(), b.eval()))
        # 训练优化
        for i in range(1, 35000):
            sess.run(train_op)
            print("第%d次优化的权重:%f偏置值:%f" % (i, w.eval(), b.eval()))
        show_img(x.eval(), y.eval(), y_predict.eval())


def show_img(x, y, y_pre):
    plt.scatter(x, y)
    plt.plot(x, y_pre)
    plt.show()


if __name__ == "__main__":
    myregression()

看看训练的结果(因为数据是随机产生的,每次的训练结果都会不同,可适当调节梯度下降的学习率和训练步数)

35000次的训练结果

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

关键词: 线性回归 回归效果 损失函数 一元线性回归 矩阵相乘

X 关闭

X 关闭