PyTorch device与cuda.device用法介绍
目录
1 查看当前的device2 cpu设备可以使用“cpu:0”来指定3 gpu设备可以使用“cuda:0”来指定4 查询CPU和GPU设备数量5 从CPU设备上转换到GPU设备5.1 torch.Tensor方法默认使用CPU设备5.2 使用to方法将cpu的Tensor转换到GPU设备上5.3 使用.cuda方法将cpu的Tensor转换到GPU设备上1 查看当前的device
输入情况:
import torch print("Default Device : {}".format(torch.Tensor([4, 5, 6]).device))
输出情况:
Default Device : cpu
2 cpu设备可以使用“cpu:0”来指定
输入情况
device = torch.Tensor([1, 2, 3], device="cpu:0").device print("Device Type: {}".format(device))
输出情况
Device Type: cpu
3 gpu设备可以使用“cuda:0”来指定
输入情况
gpu = torch.device("cuda:0") print("GPU Device:【{}:{}】".format(gpu.type, gpu.index))
输出情况
GPU Device:【cuda:0】
4 查询CPU和GPU设备数量
输入情况
print("Total GPU Count :{}".format(torch.cuda.device_count())) print("Total CPU Count :{}".format(torch.cuda.os.cpu_count()))
输出情况
Total GPU Count :1
Total CPU Count :8
5 从CPU设备上转换到GPU设备
5.1 torch.Tensor方法默认使用CPU设备
输入情况
data = torch.Tensor([[1, 4, 7], [3, 6, 9], [2, 5, 8]]) print(data.shape)
输出情况
torch.Size([3, 3])
5.2 使用to方法将cpu的Tensor转换到GPU设备上
输入情况:
data_gpu = data.to(torch.device("cuda:0")) print(data_gpu.device)
输出情况:
cuda:0
5.3 使用.cuda方法将cpu的Tensor转换到GPU设备上
输入情况:
data_gpu2 = data.cuda(torch.device("cuda:0")) # 如果只有一块gpu的话 直接写成这样:data_gpu2 = data.cuda() print(data_gpu2.device)
输出情况:
cuda:0
到此这篇关于PyTorchdevice与cuda.device用法的文章就介绍到这了,更多相关PyTorchdevice使用内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!
X 关闭
X 关闭
- 15G资费不大降!三大运营商谁提供的5G网速最快?中国信通院给出答案
- 2联想拯救者Y70发布最新预告:售价2970元起 迄今最便宜的骁龙8+旗舰
- 3亚马逊开始大规模推广掌纹支付技术 顾客可使用“挥手付”结账
- 4现代和起亚上半年出口20万辆新能源汽车同比增长30.6%
- 5如何让居民5分钟使用到各种设施?沙特“线性城市”来了
- 6AMD实现连续8个季度的增长 季度营收首次突破60亿美元利润更是翻倍
- 7转转集团发布2022年二季度手机行情报告:二手市场“飘香”
- 8充电宝100Wh等于多少毫安?铁路旅客禁止、限制携带和托运物品目录
- 9好消息!京东与腾讯续签三年战略合作协议 加强技术创新与供应链服务
- 10名创优品拟通过香港IPO全球发售4100万股 全球发售所得款项有什么用处?