PyTorch device与cuda.device用法介绍
来源:脚本之家    时间:2022-04-02 17:53:38
目录
1 查看当前的device2 cpu设备可以使用“cpu:0”来指定3 gpu设备可以使用“cuda:0”来指定4 查询CPU和GPU设备数量5 从CPU设备上转换到GPU设备5.1 torch.Tensor方法默认使用CPU设备5.2 使用to方法将cpu的Tensor转换到GPU设备上5.3 使用.cuda方法将cpu的Tensor转换到GPU设备上

1 查看当前的device

输入情况:

import torch
print("Default Device : {}".format(torch.Tensor([4, 5, 6]).device))

输出情况:

Default Device : cpu

2 cpu设备可以使用“cpu:0”来指定

输入情况

device = torch.Tensor([1, 2, 3], device="cpu:0").device
print("Device Type: {}".format(device))

输出情况

Device Type: cpu

3 gpu设备可以使用“cuda:0”来指定

输入情况

gpu = torch.device("cuda:0")
print("GPU Device:【{}:{}】".format(gpu.type, gpu.index))

输出情况

GPU Device:【cuda:0】

4 查询CPU和GPU设备数量

输入情况

print("Total GPU Count :{}".format(torch.cuda.device_count()))
print("Total CPU Count :{}".format(torch.cuda.os.cpu_count()))

输出情况

Total GPU Count :1
Total CPU Count :8

5 从CPU设备上转换到GPU设备

5.1 torch.Tensor方法默认使用CPU设备

输入情况

data = torch.Tensor([[1, 4, 7], [3, 6, 9], [2, 5, 8]])
print(data.shape)

输出情况

torch.Size([3, 3])

5.2 使用to方法将cpu的Tensor转换到GPU设备上

输入情况:

data_gpu = data.to(torch.device("cuda:0"))
print(data_gpu.device)

输出情况:

cuda:0

5.3 使用.cuda方法将cpu的Tensor转换到GPU设备上

输入情况:

data_gpu2 = data.cuda(torch.device("cuda:0"))
# 如果只有一块gpu的话  直接写成这样:data_gpu2 = data.cuda()
print(data_gpu2.device)

输出情况:

cuda:0

到此这篇关于PyTorchdevice与cuda.device用法的文章就介绍到这了,更多相关PyTorchdevice使用内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

关键词: 可以使用 设备数量 希望大家 相关文章

X 关闭

X 关闭