python画条形图实例
本文实例为大家分享了python画条形图的具体代码,供大家参考,具体内容如下
在做毕设的过程中有些数据用表格来展现,会很难看出数据之间的差别,凸显不出数据的特点,所以想制作一个条形图,这里特地记录下,已备以后用到。
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
#指定默认字体
matplotlib.rcParams["font.sans-serif"] = ["FangSong"]
matplotlib.rcParams["font.family"]="sans-serif"
c101= (8,7,3,7,10,4,11,8,11,10,8,9)
c102= (21,21,24,25,16,17,11,24,24,25,36,33)
c103= (4,4,10,3,9,8,12,2,4,5,2,6)
c104= (1,5,1,3,2,3,3,3,6,5,1,0)
c105= (3,1,0,1,3,3,1,2,0,0,0,0)
c106= (1,2,0,0,1,1,0,0,1,1,0,0)
c107= (1,0,1,0,0,1,0,0,0,0,0,0)
c108= (0,1,0,0,0,2,1,1,0,1,0,0)
c109= (1,0,1,1,0,0,1,1,0,0,0,0)
ind = np.arange(0,24,2) # the x locations for the groups
width = 0.2 # the width of the bars
fig,ax = plt.subplots()
rects1 = ax.bar(ind + width, c101, width, color="SkyBlue",align="edge", label="101")
rects2 = ax.bar(ind + 2*width, c102, width,color="IndianRed",align="edge", label="102")
rects3 = ax.bar(ind + 3*width, c103, width, color="Cyan",align="edge", label="103")
rects4 = ax.bar(ind + 4*width, c104, width, color="Magenta",align="edge", label="104")
rects5 = ax.bar(ind + 5*width, c105, width, color="Purple",align="edge", label="105")
rects6 = ax.bar(ind + 6*width, c106, width, color="Green",align="edge", label="106")
rects7 = ax.bar(ind + 7*width, c107, width, color="Yellow",align="edge", label="107")
rects8 = ax.bar(ind + 8*width, c108, width, color="Blue",align="edge", label="108")
rects9 = ax.bar(ind + 9*width, c109, width, color="Orange",align="edge", label="109")
# Add some text for labels, title and custom x-axis tick labels, etc.
#ax.set_title("Scores by group and gender")
plt.xticks(ind,("1班", "2班", "3班", "4班", "5班","6班","7班","8班","9班","10班","11班","12班"))
ax.legend(loc="upper center")
plt.show()
fig.savefig("./test77.jpg")竖起来的
%matplotlib notebook
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib
#指定默认字体
matplotlib.rcParams["font.sans-serif"] = ["FangSong"]
matplotlib.rcParams["font.family"]="sans-serif"
#解决负号"-"显示为方块的问题
matplotlib.rcParams["axes.unicode_minus"] = False
data = [[8, 21, 4, 1, 3, 1, 1, 0, 1],
[7,21,4,5,1,2,0,1,0],
[3,24,10,1,0,0,1,0,1],
[7,25,3,3,1,0,0,0,1],
[10,16,9,2,3,1,0,0,0],
[4,17,8,3,3,1,1,2,0],
[11,11,12,3,1,0,0,1,1],
[8,24,2,3,2,0,0,1,1],
[11,24,4,6,0,1,0,0,0],
[10,25,5,5,0,1,0,1,0],
[8,36,2,1,0,0,0,0],
[9,33,6,0,0,0,0,0]]
df = pd.DataFrame(data,
index=["1班","2班","3班","4班","5班","6班","7班","8班","9班","10班","11班","12班"],
columns=pd.Index(["101","102","103","104","105","106","107","108","109"]),
)
df.plot(kind="barh",figsize=(5,8))
plt.show()
#fig.savefig("./test2.jpg")以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。
X 关闭
X 关闭
- 15G资费不大降!三大运营商谁提供的5G网速最快?中国信通院给出答案
- 2联想拯救者Y70发布最新预告:售价2970元起 迄今最便宜的骁龙8+旗舰
- 3亚马逊开始大规模推广掌纹支付技术 顾客可使用“挥手付”结账
- 4现代和起亚上半年出口20万辆新能源汽车同比增长30.6%
- 5如何让居民5分钟使用到各种设施?沙特“线性城市”来了
- 6AMD实现连续8个季度的增长 季度营收首次突破60亿美元利润更是翻倍
- 7转转集团发布2022年二季度手机行情报告:二手市场“飘香”
- 8充电宝100Wh等于多少毫安?铁路旅客禁止、限制携带和托运物品目录
- 9好消息!京东与腾讯续签三年战略合作协议 加强技术创新与供应链服务
- 10名创优品拟通过香港IPO全球发售4100万股 全球发售所得款项有什么用处?

