Python matplotlib实现条形统计图
Python-matplotlib实现条形统计图,供大家参考,具体内容如下
效果图展示如下:
该代码可以处理多个实验多组观测值的展示,代码如下:
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.pyplot import MultipleLocator
def plot_bar(experiment_name, bar_name, bar_value, error_value=None,):
"""
Args:
experiment_name: x_labels
bar_name: legend name
bar_value: list(len(experiment_name), each element contains a np.array(),
which contains bar value in each group
error_value: list(len(experiment_name), each element contains a np.array(),
which contains error value in each group
Returns:
"""
# 用于正常显示中文标签
# plt.rcParams["font.sans-serif"]=["SimHei"]
colors = ["lightsteelblue", "cornflowerblue", "royalblue", "blue", "mediumblue", "darkblue", "navy", "midnightblue",
"lavender", ]
assert len(bar_value[0]) <= len(colors) # if not try to add color to "colors"
plt.rcParams["axes.unicode_minus"] = False
plt.style.use("seaborn")
font = {"weight": "normal", "size": 20, }
font_title = {"weight": "normal", "size": 28, }
# bar width
width = 0.2
# groups of data
x_bar = np.arange(len(experiment_name))
# create figure
plt.figure(figsize=(10, 9))
ax = plt.subplot(111) # 假如设置为221,则表示创建两行两列也就是4个子画板,ax为第一个子画板
# plot bar
bar_groups = []
value = []
for i in range(len(bar_value[0])):
for j in range(len(experiment_name)):
value.append(bar_value[j][i])
group = ax.bar(x_bar - (len(experiment_name)-3-i)*width, copy.deepcopy(value), width=width, color=colors[i], label=bar_name[i])
bar_groups.append(group)
value.clear()
# add height to each bar
i = j = 0
for bars in bar_groups:
j = 0
for rect in bars:
x = rect.get_x()
height = rect.get_height()
# ax.text(x + 0.1, 1.02 * height, str(height), fontdict=font)
# error bar
if error_value:
ax.errorbar(x + width / 2, height, yerr=error_value[j][i], fmt="-", ecolor="black",
elinewidth=1.2, capsize=2,
capthick=1.2)
j += 1
i += 1
# 设置刻度字体大小
plt.xticks(fontsize=15)
plt.yticks(fontsize=18)
# 设置x轴的刻度
ax.set_xticks(x_bar)
ax.set_xticklabels(experiment_name, fontdict=font)
# 设置y轴的刻标注
ax.set_ylabel("Episode Cost", fontdict=font_title)
ax.set_xlabel("Experiment", fontdict=font_title)
# 是否显示网格
ax.grid(False)
# 拉伸y轴
ax.set_ylim(0, 7.5)
# 把轴的刻度间隔设置为1,并存在变量里
y_major_locator = MultipleLocator(2.5)
ax.yaxis.set_major_locator(y_major_locator)
# 设置标题
plt.suptitle("Cost Comparison", fontsize=30, horizontalalignment="center")
plt.subplots_adjust(left=0.11, bottom=0.1, right=0.95, top=0.93, wspace=0.1, hspace=0.2)
# 设置边框线宽为2.0
ax.spines["bottom"].set_linewidth("2.0")
# 添加图例
ax.legend(loc="upper left", frameon=True, fontsize=19.5)
# plt.savefig("test.png")
plt.show()
plt.legend()
if __name__ == "__main__":
test_experiment_name = ["Test 1", "Test 2", "Test 3", "Test 4"]
test_bar_name = ["A", "B", "C"]
test_bar_value = [
np.array([1, 2, 3]),
np.array([4, 5, 6]),
np.array([3, 2, 4]),
np.array([5, 2, 2])
]
test_error_value = [
np.array([1, 1, 2]),
np.array([0.2, 0.6, 1]),
np.array([0, 0, 0]),
np.array([0.5, 0.2, 0.2])
]
plot_bar(test_experiment_name, test_bar_name, test_bar_value, test_error_value)以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。
下一篇:深入解析golang bufio
X 关闭
X 关闭
- 15G资费不大降!三大运营商谁提供的5G网速最快?中国信通院给出答案
- 2联想拯救者Y70发布最新预告:售价2970元起 迄今最便宜的骁龙8+旗舰
- 3亚马逊开始大规模推广掌纹支付技术 顾客可使用“挥手付”结账
- 4现代和起亚上半年出口20万辆新能源汽车同比增长30.6%
- 5如何让居民5分钟使用到各种设施?沙特“线性城市”来了
- 6AMD实现连续8个季度的增长 季度营收首次突破60亿美元利润更是翻倍
- 7转转集团发布2022年二季度手机行情报告:二手市场“飘香”
- 8充电宝100Wh等于多少毫安?铁路旅客禁止、限制携带和托运物品目录
- 9好消息!京东与腾讯续签三年战略合作协议 加强技术创新与供应链服务
- 10名创优品拟通过香港IPO全球发售4100万股 全球发售所得款项有什么用处?

