目录
案例分析1.移动平均值2.累计求和(ROW)3.累计求和(RANGE)示例表和脚本关于窗口函数的基础,请看文章SQL窗口函数
许多常见的聚合函数也可以作为窗口函数使用,包括AVG()、SUM()、COUNT()、MAX()以及MIN()等函数。
案例分析
案例使用的示例表
下面的查询中会用到两个表,其中sales_monthly表中存储了不同产品(苹果、香蕉、橘子)每个月的销售额情况。以下是该表中的部分数据:
transfer_log表中记录了一些银行账户的交易日志。以下是该表中的部分数据:
该表中的字段分别表示交易日志编号、交易时间、交易发起账户、交易接收账户、交易类型以及交易金额。这两个表的初始化脚本可以在文章底部获取。
1.移动平均值
AVG函数在作为窗口函数使用时,可以用于计算随着当前行移动的窗口内数据行的平均值。
例如,以下语句用于查找不同产品每个月以及截至当前月最近3个月的平均销售额
SELECT m.product,m.ym,m.amount, AVG(m.amount) OVER( PARTITION BY m.product ORDER BY m.ym ROWS BETWEEN 2 PRECEDING AND CURRENT ROW ) FROM sales_monthly m ORDER BY m.product,m.ym
AVG函数OVER子句中的PARTITION BY选项表示按照产品进行分区。
ORDER BY选项表示按照月份进行排序;ROWS BETWEEN 2 PRECEDING AND CURRENT ROW表示窗口从当前行的前2行开始,直到当前行结束。该查询返回的结果如下:
对于“橘子”:
第一个月的分析窗口只有1行数据,因此平均销售额为“10154”。
第二个月的分析窗口为第1行和第2行数据,因此平均销售额为“10168.5”((10154+10183)/2)。
第三个月的分析窗口为第1行到第3行数据,因此平均销售额为“10194”((10154+10183+10245)/3)。
依此类推,直到计算完“橘子”所有月份的平均销售额,然后开始计算其他产品的平均销售额。
2.累计求和(ROW)
SUM函数作为窗口函数时,可以用于统计指定窗口内的累计值。
例如,以下语句用于查找不同产品截至当前月份的累计销售额:
SELECT m.product,m.ym,m.amount, SUM(m.amount) OVER( PARTITION BY m.product ORDER BY m.ym ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW ) FROM sales_monthly m ORDER BY m.product,m.ym
SUM函数OVER子句中的PARTITION BY选项表示按照产品进行分区。
ORDER BY选项表示按照月份进行排序。
ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW表示窗口从当前分区第1行开始,直到当前行结束。
该查询返回的结果如下:
对于“橘子”:
第一个月的分析窗口只有1行数据,因此累计销售额为“10154”。
第二个月的分析窗口为第1行和第2行数据,因此累计销售额为“20337”(10154+10183)。
第三个月的分析窗口为第1行到第3行数据,因此累计销售额为“30582”(10154+10183+10245)。
依此类推,直到计算完“橘子”所有月份的累计销售额,然后开始计算其他产品的累计销售额。
提示:对于聚合窗口函数,如果我们没有指定ORDER BY选项,默认的窗口大小就是整个分区。
如果我们指定了ORDER BY选项,默认的窗口大小就是分区的第一行到当前行。
因此,以上示例语句中的ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW选项可以省略。省略后的语句:
执行结果与上面相同。
如果去掉ORDER BY选项,查询的窗口大小就是整个分区,如下图所示:
这时,合计值就变成了分区内所有记录的合计。
3.累计求和(RANGE)
除使用ROWS关键字以数据行为单位指定窗口的偏移量外,我们也可以使用RANGE关键字以数值为单位指定窗口的偏移量。
例如,以下语句用于查找短期之内(5天)累计转账超过100万元的账户:
SELECT log_ts,from_user,total_amount FROM ( SELECT to_char(t.log_ts,"yyyy-mm-dd hh24:mi:ss") log_ts,t.from_user,t.amount, SUM(t.amount) OVER( PARTITION BY t.from_user ORDER BY t.log_ts RANGE INTERVAL "5" DAY PRECEDING ) AS total_amount FROM transfer_log t WHERE t.type = "转账" ) WHERE total_amount >= 1000000;
其中,SUM函数OVER子句中的RANGE选项指定了一个5天之内的时间窗口。该查询返回的结果如下:
截至2021年1月10日7时46分02秒,账户“62221234567890”在最近5天之内累计转账105万元。
示例表和脚本
-- 创建销量表sales_monthly -- product表示产品名称,ym表示年月,amount表示销售金额(元) CREATE TABLE sales_monthly(product VARCHAR(20), ym VARCHAR(10), amount NUMERIC(10, 2)); -- 生成测试数据 INSERT INTO sales_monthly (product,ym,amount) VALUES ("苹果","201801",10159.00); INSERT INTO sales_monthly (product,ym,amount) VALUES ("苹果","201802",10211.00); INSERT INTO sales_monthly (product,ym,amount) VALUES ("苹果","201803",10247.00); INSERT INTO sales_monthly (product,ym,amount) VALUES ("苹果","201804",10376.00); INSERT INTO sales_monthly (product,ym,amount) VALUES ("苹果","201805",10400.00); INSERT INTO sales_monthly (product,ym,amount) VALUES ("苹果","201806",10565.00); INSERT INTO sales_monthly (product,ym,amount) VALUES ("苹果","201807",10613.00); INSERT INTO sales_monthly (product,ym,amount) VALUES ("苹果","201808",10696.00); INSERT INTO sales_monthly (product,ym,amount) VALUES ("苹果","201809",10751.00); INSERT INTO sales_monthly (product,ym,amount) VALUES ("苹果","201810",10842.00); INSERT INTO sales_monthly (product,ym,amount) VALUES ("苹果","201811",10900.00); INSERT INTO sales_monthly (product,ym,amount) VALUES ("苹果","201812",10972.00); INSERT INTO sales_monthly (product,ym,amount) VALUES ("苹果","201901",11155.00); INSERT INTO sales_monthly (product,ym,amount) VALUES ("苹果","201902",11202.00); INSERT INTO sales_monthly (product,ym,amount) VALUES ("苹果","201903",11260.00); INSERT INTO sales_monthly (product,ym,amount) VALUES ("苹果","201904",11341.00); INSERT INTO sales_monthly (product,ym,amount) VALUES ("苹果","201905",11459.00); INSERT INTO sales_monthly (product,ym,amount) VALUES ("苹果","201906",11560.00); INSERT INTO sales_monthly (product,ym,amount) VALUES ("香蕉","201801",10138.00); INSERT INTO sales_monthly (product,ym,amount) VALUES ("香蕉","201802",10194.00); INSERT INTO sales_monthly (product,ym,amount) VALUES ("香蕉","201803",10328.00); INSERT INTO sales_monthly (product,ym,amount) VALUES ("香蕉","201804",10322.00); INSERT INTO sales_monthly (product,ym,amount) VALUES ("香蕉","201805",10481.00); INSERT INTO sales_monthly (product,ym,amount) VALUES ("香蕉","201806",10502.00); INSERT INTO sales_monthly (product,ym,amount) VALUES ("香蕉","201807",10589.00); INSERT INTO sales_monthly (product,ym,amount) VALUES ("香蕉","201808",10681.00); INSERT INTO sales_monthly (product,ym,amount) VALUES ("香蕉","201809",10798.00); INSERT INTO sales_monthly (product,ym,amount) VALUES ("香蕉","201810",10829.00); INSERT INTO sales_monthly (product,ym,amount) VALUES ("香蕉","201811",10913.00); INSERT INTO sales_monthly (product,ym,amount) VALUES ("香蕉","201812",11056.00); INSERT INTO sales_monthly (product,ym,amount) VALUES ("香蕉","201901",11161.00); INSERT INTO sales_monthly (product,ym,amount) VALUES ("香蕉","201902",11173.00); INSERT INTO sales_monthly (product,ym,amount) VALUES ("香蕉","201903",11288.00); INSERT INTO sales_monthly (product,ym,amount) VALUES ("香蕉","201904",11408.00); INSERT INTO sales_monthly (product,ym,amount) VALUES ("香蕉","201905",11469.00); INSERT INTO sales_monthly (product,ym,amount) VALUES ("香蕉","201906",11528.00); INSERT INTO sales_monthly (product,ym,amount) VALUES ("桔子","201801",10154.00); INSERT INTO sales_monthly (product,ym,amount) VALUES ("桔子","201802",10183.00); INSERT INTO sales_monthly (product,ym,amount) VALUES ("桔子","201803",10245.00); INSERT INTO sales_monthly (product,ym,amount) VALUES ("桔子","201804",10325.00); INSERT INTO sales_monthly (product,ym,amount) VALUES ("桔子","201805",10465.00); INSERT INTO sales_monthly (product,ym,amount) VALUES ("桔子","201806",10505.00); INSERT INTO sales_monthly (product,ym,amount) VALUES ("桔子","201807",10578.00); INSERT INTO sales_monthly (product,ym,amount) VALUES ("桔子","201808",10680.00); INSERT INTO sales_monthly (product,ym,amount) VALUES ("桔子","201809",10788.00); INSERT INTO sales_monthly (product,ym,amount) VALUES ("桔子","201810",10838.00); INSERT INTO sales_monthly (product,ym,amount) VALUES ("桔子","201811",10942.00); INSERT INTO sales_monthly (product,ym,amount) VALUES ("桔子","201812",10988.00); INSERT INTO sales_monthly (product,ym,amount) VALUES ("桔子","201901",11099.00); INSERT INTO sales_monthly (product,ym,amount) VALUES ("桔子","201902",11181.00); INSERT INTO sales_monthly (product,ym,amount) VALUES ("桔子","201903",11302.00); INSERT INTO sales_monthly (product,ym,amount) VALUES ("桔子","201904",11327.00); INSERT INTO sales_monthly (product,ym,amount) VALUES ("桔子","201905",11423.00); INSERT INTO sales_monthly (product,ym,amount) VALUES ("桔子","201906",11524.00); -- 创建银行交易日志表transfer_log -- Oracle、MySQL、PostgreSQL以及SQLite CREATE TABLE transfer_log ( log_id INTEGER NOT NULL PRIMARY KEY, -- 交易日志编号 log_ts TIMESTAMP NOT NULL, -- 交易时间 from_user VARCHAR(50) NOT NULL, -- 交易发起账号 to_user VARCHAR(50), -- 交易接收账号 type VARCHAR(10) NOT NULL, -- 交易类型 amount NUMERIC(10) NOT NULL -- 交易金额(元) ); -- 生成测试数据 -- Oracle 需要执行以下ALTER语句 ALTER SESSION SET nls_timestamp_format = "YYYY-MM-DD HH24:MI:SS"; INSERT INTO transfer_log (log_id,log_ts,from_user,to_user,type,amount) VALUES (1,"2021-01-02 10:31:40","62221234567890",NULL,"存款",50000); INSERT INTO transfer_log (log_id,log_ts,from_user,to_user,type,amount) VALUES (2,"2021-01-02 10:32:15","62221234567890",NULL,"存款",100000); INSERT INTO transfer_log (log_id,log_ts,from_user,to_user,type,amount) VALUES (3,"2021-01-03 08:14:29","62221234567890","62226666666666","转账",200000); INSERT INTO transfer_log (log_id,log_ts,from_user,to_user,type,amount) VALUES (4,"2021-01-05 13:55:38","62221234567890","62226666666666","转账",150000); INSERT INTO transfer_log (log_id,log_ts,from_user,to_user,type,amount) VALUES (5,"2021-01-07 20:00:31","62221234567890","62227777777777","转账",300000); INSERT INTO transfer_log (log_id,log_ts,from_user,to_user,type,amount) VALUES (6,"2021-01-09 17:28:07","62221234567890","62227777777777","转账",500000); INSERT INTO transfer_log (log_id,log_ts,from_user,to_user,type,amount) VALUES (7,"2021-01-10 07:46:02","62221234567890","62227777777777","转账",100000); INSERT INTO transfer_log (log_id,log_ts,from_user,to_user,type,amount) VALUES (8,"2021-01-11 09:36:53","62221234567890",NULL,"存款",40000); INSERT INTO transfer_log (log_id,log_ts,from_user,to_user,type,amount) VALUES (9,"2021-01-12 07:10:01","62221234567890","62228888888881","转账",10000); INSERT INTO transfer_log (log_id,log_ts,from_user,to_user,type,amount) VALUES (10,"2021-01-12 07:11:12","62221234567890","62228888888882","转账",8000); INSERT INTO transfer_log (log_id,log_ts,from_user,to_user,type,amount) VALUES (11,"2021-01-12 07:12:36","62221234567890","62228888888883","转账",5000); INSERT INTO transfer_log (log_id,log_ts,from_user,to_user,type,amount) VALUES (12,"2021-01-12 07:13:55","62221234567890","62228888888884","转账",6000); INSERT INTO transfer_log (log_id,log_ts,from_user,to_user,type,amount) VALUES (13,"2021-01-12 07:14:24","62221234567890","62228888888885","转账",7000); INSERT INTO transfer_log (log_id,log_ts,from_user,to_user,type,amount) VALUES (14,"2021-01-21 12:11:16","62221234567890","62228888888885","转账",70000);
到此这篇关于SQL窗口函数之聚合窗口函数的使用的文章就介绍到这了,更多相关SQL 聚合窗口函数内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!
下一篇:SQL窗口函数的使用方法
X 关闭
X 关闭
- 15G资费不大降!三大运营商谁提供的5G网速最快?中国信通院给出答案
- 2联想拯救者Y70发布最新预告:售价2970元起 迄今最便宜的骁龙8+旗舰
- 3亚马逊开始大规模推广掌纹支付技术 顾客可使用“挥手付”结账
- 4现代和起亚上半年出口20万辆新能源汽车同比增长30.6%
- 5如何让居民5分钟使用到各种设施?沙特“线性城市”来了
- 6AMD实现连续8个季度的增长 季度营收首次突破60亿美元利润更是翻倍
- 7转转集团发布2022年二季度手机行情报告:二手市场“飘香”
- 8充电宝100Wh等于多少毫安?铁路旅客禁止、限制携带和托运物品目录
- 9好消息!京东与腾讯续签三年战略合作协议 加强技术创新与供应链服务
- 10名创优品拟通过香港IPO全球发售4100万股 全球发售所得款项有什么用处?