目录
前言1. 链接表2. 最短路径算法2.1 无向图最短路径算法3. 总结前言
图的常用存储方式有 2 种:
邻接炬阵链接表邻接炬阵的优点和缺点都很明显。优点是简单、易理解,对于大部分图结构而言,都是稀疏的,使用炬阵存储空间浪费就较大。
链接表的存储相比较邻接炬阵,使用起来更方便,对于空间的使用是刚好够用原则,不会产生太多空间浪费。操作起来,也是简单。
本文将以链接表方式存储图结构,在此基础上实现无向图最短路径搜索。
1. 链接表
链接表的存储思路:
使用链接表实现图的存储时,有主表和子表概念。
主表:用来存储图对象中的所有顶点数据。子表:每一个顶点自身会维护一个子表,用来存储与其相邻的所有顶点数据。如下图结构中有 5 个顶点,使用链接表保存时,会有主表 1 张,子表 5 张。链接表的优点是能够紧凑地表示稀疏图。
在Python中可以使用列表嵌套实现链接表,这应该是最简单的表达方式。
g = [ ["A0", [("B1", 3), ("D3", 5)]], ["B1", [("C2", 4)]], ["C2", [("D3", 6), ("E4", 1)]], ["D3", [("E4", 2)]], ["E4", [("B1", 7)]], ]
在此基础上,可以做一些简单的常规操作。
查询所有顶点:
for node in g: print(node[0],end=" ")
查询顶点及其相邻顶点:
for node in g: print("-------------------") print(node[0], ":", end="") edges = node[1] for e in edges: v, w = e print(v, w, end=";") print()
当顶点和相邻顶点之间的关系很复杂时,这种层层嵌套的存储格式会让人眼花缭乱。即使要使用这种嵌套方式,那也应该选择Python中的字典类型,对于查询会方便很多。
g = { "A0":{"B1": 3, "D3": 5}, "B1": {"C2": 4}, "C2": {"D3": 6, "E4": 1}, "D3": {"E4":2}, "E4": {"B1": 7} }
如上结构,在查询时,无论是方便性还是性能,都要强于完全的列表方案。
查询所有顶点:
for node in g.keys(): print(node,end=" ")
查询与某一顶点相邻的顶点时,只需要提供顶点名称就可以了。
print("查询与 A0 项点有连接的其它顶点") for k, v in g.get("A0").items(): print((k, v), end=";")
以上的存储方案,适合于演示,并不适合于开发环境,因顶点本身是具有特定的数据含义(如,可能是城市、公交车站、网址、路由器……),且以上存储方案让顶点和其相邻顶点的信息过度耦合,在实际运用时,会牵一发而动全身。
也许一个微不足道的修改,会波动到整个结构的更新。
所以,有必要引于OOP
设计理念,让顶点和图有各自特定数据结构,通过 2 种类类型可以更好地体现图是顶点的集合,顶点和顶点之间的多对多关系。
项点类:
class Vertex: def __init__(self, name, v_id=0): # 顶点的编号 self.v_id = v_id # 顶点的名称 self.v_name = name # 是否被访问过:False 没有 True:有 self.visited = False # 与此顶点相连接的其它顶点 self.connected_to = {}
顶点类结构说明:
visited
:用于搜索路径算法中,检查节点是否已经被搜索过。connected_to
:存储与项点相邻的顶点信息。这里使用了字典,以顶点为键,权重为值。
图类:
class Graph: def __init__(self): # 一维列表,保存节点 self.vert_list = {} # 顶点个数 self.v_nums = 0 # 使用队列模拟队列或栈,用于路径搜索算法 self.queue_stack = [] # 保存搜索到的路径 self.searchPath = []
图类结构说明:
queue_stack
:使用队列模拟栈或队列。用于路径搜索过程中保存临时数据。
怎么使用列表模拟队列或栈?
列表有append()
、pop()
2 个很价值的方法。
append()
用来向列表中添加数据,且每次都是从列表最后面添加。
pop()
默认从列表最后面删除且弹出数据,pop(参数)
可以提供索引值用来从指定位置删除且弹出数据。
使用append()和pop()方法就能模拟栈,从同一个地方进出数据。
使用append()和pop(0)方法就能模拟队列,从后面添加数据,从最前面获取数据
searchPath
:用于保存搜索到的路径数据。
2. 最短路径算法
从图结构可知,从一个顶点到达另一个顶点,可不止一条可行路径,在众多路径我们总是试图选择一条最短路径,当然,需求不同,衡量一个路径是不是最短路径的标准也会不同。
如打开导航系统后,最短路径可能是费用最少的那条,可能是速度最快的那条,也可能是量程数最少的或者是红绿灯是最少的……
在无向图中,以经过的边数最少的路径为最短路径。
在有向加权图中,会以附加在每条边上的权重的数据含义来衡量。权重可以是时间、速度、量程数……
2.1 无向图最短路径算法
查找无向图中任意两个顶点间的最短路径长度,可以直接使用广度搜索算法。如下图求解A0 ~ F5
的最短路径。
Tips:无向图中任意 2 个顶点间的最短路径长度由边数决定。
广度优先搜索算法流程:
广度优先搜索算法的基本原则:以某一顶点为参考点,先搜索离此顶点最近的顶点,再搜索离最近顶点最近的顶点……以此类推,一层一层向目标顶点推进。
如从顶点A0
找到顶点F5
。先从离A0
最近的顶点B1
、D3
找起,如果没找到,再找离B1
、D3
最近的顶点C2
、E4
,如果还是没有找到,再找离C2
、E4
最近的顶点F5
。
因为每一次搜索都是采用最近原则,最后搜索到的目标也一定是最近的路径。
也因为采用最近原则,所以搜索过程中,在搜索过程中所经历到的每一个顶点的路径都是最短路径。最近+最近,结果必然还是最近。
显然,广度优先搜索的最近搜索原则是符合先进先出思想的,具体算法实施时可以借助队列实现整个过程。
算法流程:
1.先确定起始点A0
。
2.找到A0
的 2 个后序顶点B1
、D3
(或者说B1、D3
的前序顶点是A0
),压入队列中。除去起点A0
,B1
、D3
顶点属于第一近压入队列的节点。
B1
和D3
压入队列的顺序并不影响A0
~B1
或A0
~D3
的路径距离(都是 1)。A0
~B1
的最短路径长度为 1A0
~D3
的最短路径长度为 1
3.从队列中搜索B1
时,找到B1
的后序顶点C2
并压入队列。B1
是C2
的前序顶点。
B1
~C2
的最短路径长度为 1,而又因为A0
~B1
的最短路径长度为 1 ,所以A0
~C2
的最短路径为 2
4.B1
搜索完毕后,在队列中搜索B3
时,找到B3
的后序顶点E4
,压入队列。因B1
和D3
属于第一近顶点,所以这 2 个顶点的后序顶点C2
、E4
属于第二近压入队列,或说A0-B1-C2
、A0-D3-E4
的路径距离是相同的(都为 2)。
5.当搜索到C2
时,没有后序顶点,此时队列没有压入操作。
6.当 搜索到E4
时,E4
有 2 个后序顶点C2
、F5
,因C2
已经压入过,所以仅压入F5
。因F5
是由第二近顶点压入,所以F5
是属于第三近压入顶点。
A0-D3-E4-F5
的路径为 3。
编码实现广度优先算法:
在顶点类中添加如下几个方法:
class Vertex: def __init__(self, v_name, v_id=0): # 顶点的编号 self.v_id = v_id # 顶点的名称 self.v_name = v_name # 是否被访问过:False 没有 True:有 self.visited = False # 与此顶点相连接的其它顶点 self.connected_to = {} """ 添加邻接顶点 nbr_ver:相邻顶点 weight:无向无权重图,权重默认设置为 1 """ def add_neighbor(self, nbr_ver, weight=1): # 以相邻顶点为键,权重为值 self.connected_to[nbr_ver] = weight """ 显示与当前顶点相邻的顶点 """ def __str__(self): return "与 {0} 顶点相邻的顶点有:{1}".format(self.v_name, str([(key.v_name, val) for key, val in self.connected_to.items()])) """ 得到相邻顶点的权重 """ def get_weight(self, nbr_v): return self.connected_to[nbr_v] """ 判断给定的顶点是否和当前顶点相邻 """ def is_neighbor(self, nbr_v): return nbr_v in self.connected_to
顶点类用来构造一个新顶点,并维护与相邻顶点的关系。
对图类中的方法做一下详细解释:
初始化方法:
class Graph: def __init__(self): # 一维列表,保存节点 self.vert_list = {} # 顶点个数 self.v_nums = 0 # 使用队列模拟队列或栈,用于路径搜索算法 self.queue_stack = [] # 保存搜索到的路径 self.searchPath = []
为图添加新顶点方法:
def add_vertex(self, vert): if vert.v_name in self.vert_list: # 已经存在 return # 顶点的编号内部生成 vert.v_id = self.v_nums # 所有顶点保存在图所维护的字典中,以顶点名为键,顶点对象为值 self.vert_list[vert.v_name] = vert # 数量增一 self.v_nums += 1
顶点的编号由图对象内部指定,便于统一管理。
所有顶点保存在一个字典中,以顶点名称为键,顶点对象为值。也可以使用列表直接保存顶点,根据需要决定。
提供一个根据顶点名称返回顶点的方法:
""" 根据顶点名找到顶点对象 """ def find_vertex(self, v_name): if v_name in self.vert_list: return self.vert_list.get(v_name) # 查询所有顶点 def find_vertexes(self): return [str(ver) for ver in self.vert_list.values()]
添加顶点与相邻顶点的关系:此方法属于一个封装方法,本质是调用顶点自身的添加相邻顶点方法。
""" 添加节点与节点之间的关系(边), 如果是无权重图,统一设定为 1 """ def add_edge(self, from_v, to_v, weight=1): # 如果节点不存在 if from_v not in self.vert_list: self.add_vertex(from_v) if to_v not in self.vert_list: self.add_vertex(to_v) from_v.add_neighbor(to_v, weight)
图中核心方法:用来广度优先搜索算法查找顶点与顶点之间的路径
""" 广度优先搜索 """ def bfs_nearest_path(self, from_v, to_v): tmp_path = [] tmp_path.append(from_v) # 起始顶点不用压入队列 from_v.visited = True # from_v 顶点的相邻顶点压入队列 self.push_queue(from_v) while len(self.queue_stack) != 0: # 从队列中获取顶点 v_ = self.queue_stack.pop(0) if from_v.is_neighbor(v_): # 如果 v_ 是 from_v 的后序相邻顶点,则连接成一条中路径信息 tmp_path.append(v_) # 添加路径信息 self.searchPath.append(tmp_path) tmp_path = tmp_path.copy() tmp_path.pop() else: for path_ in self.searchPath: tmp_path = path_.copy() tmp = tmp_path[len(tmp_path) - 1] if tmp.is_neighbor(v_): tmp_path.append(v_) self.searchPath.append(tmp_path) if v_.v_id == to_v.v_id: break else: self.push_queue(v_) """ 把某一顶点的相邻顶点压入队列 """ def push_queue(self, vertex): # 获取 vertex 顶点的相邻顶点 for v_ in vertex.connected_to.keys(): # 检查此顶点是否压入过 if v_.visited: continue vertex.visited = True self.queue_stack.append(v_)
广度优先搜索算法有一个核心点,当搜索到某一个顶点后,需要找到与此顶点相邻的其它顶点,并压入队列中。push_queue()
方法就是做些事情的。如果某一个顶点曾经进过队列,就不要再重复压入队列了。
测试代码:
""" 测试无向图最短路径 """ if __name__ == "__main__": # 初始化图 graph = Graph() # 添加节点 for v_name in ["A", "B", "C", "D", "E", "F"]: v = Vertex(v_name) graph.add_vertex(v) # 添加顶点之间关系 v_to_v = [("A", "B"), ("A", "D"), ("B", "C"), ("C", "E"), ("D", "E"), ("E", "F")] # 无向图中每 2 个相邻顶点之间互为关系 for v in v_to_v: f_v = graph.find_vertex(v[0]) t_v = graph.find_vertex(v[1]) graph.add_edge(f_v, t_v) graph.add_edge(t_v, f_v) # 输出所有顶点 print("-----------顶点及顶点之间的关系-------------") for v in graph.find_vertexes(): print(v) # 查找路径 print("-------------广度优先搜索--------------------") # 起始点 f_v = graph.find_vertex("A") # 目标点 t_v = graph.find_vertex("F") # 广度优先搜索 graph.bfs_nearest_path(f_v, t_v) for path in graph.searchPath: weight = 0 for idx in range(len(path)): if idx != len(path) - 1: weight += path[idx].get_weight(path[idx + 1]) print(path[idx].v_name, end="-") print("的最短路径长度,", weight)
输出结果:
-----------顶点及顶点之间的关系-------------
与 A 顶点相邻的顶点有:[("B", 1), ("D", 1)]
与 B 顶点相邻的顶点有:[("A", 1), ("C", 1)]
与 C 顶点相邻的顶点有:[("B", 1), ("E", 1)]
与 D 顶点相邻的顶点有:[("A", 1), ("E", 1)]
与 E 顶点相邻的顶点有:[("C", 1), ("D", 1), ("F", 1)]
与 F 顶点相邻的顶点有:[("E", 1)]
-------------广度优先搜索--------------------
A-B-的最短路径长度, 1
A-D-的最短路径长度, 1
A-B-C-的最短路径长度, 2
A-D-E-的最短路径长度, 2
A-B-C-E-的最短路径长度, 3
A-D-E-的最短路径长度, 2
A-B-C-E-的最短路径长度, 3
A-D-E-F-的最短路径长度, 3
A-B-C-E-F-的最短路径长度, 4
A-D-E-F-的最短路径长度, 3
A-B-C-E-F-的最短路径长度, 4
广度优先搜索算法也可以使用递归方案:
""" 递归实现 """ def bfs_nearest_path_dg(self, from_v, to_v): # 相邻顶点 self.push_queue(from_v) tmp_v = self.queue_stack.pop(0) if not tmp_v.visited: self.searchPath.append(tmp_v) if tmp_v.v_id == to_v.v_id: return self.bfs_nearest_path_dg(tmp_v, to_v)
在无向图中,查找起始点到目标点的最短路径,使用广度优先搜索算法便可实现,但如果是有向加权图,可能不会称心如愿。因有向加权图中的边是有权重的。所以对于有向加权图则需要另择方案。
3. 总结
图数据结构的实现过程中会涉及到其它数据结构的运用。学习、使用图数据结构对其它数据结构有重新认识和巩固作用。
以上就是Python基于链接表实现无向图最短路径搜索的详细内容,更多关于Python无向图最短路径搜索的资料请关注脚本之家其它相关文章!
X 关闭
X 关闭