目录
引言1、sobel算子2、roberts算子3、scharr算子4、prewitt算子5、canny算子6、gabor滤波7、gaussian滤波8、median9、水平、垂直边缘检测10、交叉边缘检测引言
对图像进行滤波,可以有两种效果:一种是平滑滤波,用来抑制噪声;另一种是微分算子,可以用来检测边缘和特征提取。
(相关资料图)
skimage库中通过filters模块进行滤波操作。
1、sobel算子
sobel算子可用来检测边缘
函数格式为:skimage.filters.sobel(image,mask=None)
from skimage import data,filters import matplotlib.pyplot as plt img = data.camera() edges = filters.sobel(img) plt.imshow(edges,plt.cm.gray)
2、roberts算子
roberts算子和sobel算子一样,用于检测边缘
调用格式也是一样的:
edges = filters.roberts(img)
3、scharr算子
功能同sobel,调用格式:
edges = filters.scharr(img)
4、prewitt算子
功能同sobel,调用格式:
edges = filters.prewitt(img)
5、canny算子
canny算子也是用于提取边缘特征,但它不是放在filters模块,而是放在feature模块
函数格式:skimage.feature.canny(image,sigma=1.0)
可以修改sigma的值来调整效果
from skimage import data,filters,feature import matplotlib.pyplot as plt img = data.camera() edges1 = feature.canny(img) #sigma=1 edges2 = feature.canny(img,sigma=3) #sigma=3 plt.figure("canny",figsize=(8,8)) plt.subplot(121) plt.imshow(edges1,plt.cm.gray) plt.subplot(122) plt.imshow(edges2,plt.cm.gray) plt.show()
从结果可以看出,sigma越小,边缘线条越细小。
6、gabor滤波
gabor滤波可用来进行边缘检测和纹理特征提取。
函数调用格式:skimage.filters.gabor_filter(image,frequency)
通过修改frequency值来调整滤波效果,返回一对边缘结果,一个是用真实滤波核的滤波结果,一个是想象的滤波核的滤波结果。
from skimage import data,filters import matplotlib.pyplot as plt img = data.camera() filt_real, filt_imag = filters.gabor_filter(img,frequency=0.6) plt.figure("gabor",figsize=(8,8)) plt.subplot(121) plt.title("filt_real") plt.imshow(filt_real,plt.cm.gray) plt.subplot(122) plt.title("filt-imag") plt.imshow(filt_imag,plt.cm.gray) plt.show()
以上为frequency=0.6的结果图。
以上为frequency=0.1的结果图
7、gaussian滤波
多维的滤波器,是一种平滑滤波,可以消除高斯噪声。
调用函数为:skimage.filters.gaussian_filter(image,sigma)
通过调节sigma的值来调整滤波效果
from skimage import data,filters import matplotlib.pyplot as plt img = data.astronaut() edges1 = filters.gaussian_filter(img,sigma=0.4) #sigma=0.4 edges2 = filters.gaussian_filter(img,sigma=5) #sigma=5 plt.figure("gaussian",figsize=(8,8)) plt.subplot(121) plt.imshow(edges1,plt.cm.gray) plt.subplot(122) plt.imshow(edges2,plt.cm.gray) plt.show()
可见sigma越大,过滤后的图像越模糊
8、median
中值滤波,一种平滑滤波,可以消除噪声。
需要用skimage.morphology模块来设置滤波器的形状。
from skimage import data,filters import matplotlib.pyplot as plt from skimage.morphology import disk img = data.camera() edges1 = filters.median(img,disk(5)) edges2= filters.median(img,disk(9)) plt.figure("median",figsize=(8,8)) plt.subplot(121) plt.imshow(edges1,plt.cm.gray) plt.subplot(122) plt.imshow(edges2,plt.cm.gray) plt.show()
从结果可以看出,滤波器越大,图像越模糊。
9、水平、垂直边缘检测
上边所举的例子都是进行全部边缘检测,有些时候我们只需要检测水平边缘,或垂直边缘,就可用下面的方法。
水平边缘检测:sobel_h, prewitt_h, scharr_h
垂直边缘检测: sobel_v, prewitt_v, scharr_v
from skimage import data,filters import matplotlib.pyplot as plt img = data.camera() edges1 = filters.sobel_h(img) edges2 = filters.sobel_v(img) plt.figure("sobel_v_h",figsize=(8,8)) plt.subplot(121) plt.imshow(edges1,plt.cm.gray) plt.subplot(122) plt.imshow(edges2,plt.cm.gray) plt.show()
上边左图为检测出的水平边缘,右图为检测出的垂直边缘。
10、交叉边缘检测
可使用Roberts的十字交叉核来进行过滤,以达到检测交叉边缘的目的。这些交叉边缘实际上是梯度在某个方向上的一个分量。
其中一个核:
0 1
-1 0
对应的函数:
roberts_neg_diag(image)
例:
from skimage import data,filters import matplotlib.pyplot as plt img =data.camera() dst =filters.roberts_neg_diag(img) plt.figure("filters",figsize=(8,8)) plt.subplot(121) plt.title("origin image") plt.imshow(img,plt.cm.gray) plt.subplot(122) plt.title("filted image") plt.imshow(dst,plt.cm.gray)
另外一个核:
1 0
0 -1
对应函数为:
roberts_pos_diag(image)
from skimage import data,filters import matplotlib.pyplot as plt img =data.camera() dst =filters.roberts_pos_diag(img) plt.figure("filters",figsize=(8,8)) plt.subplot(121) plt.title("origin image") plt.imshow(img,plt.cm.gray) plt.subplot(122) plt.title("filted image") plt.imshow(dst,plt.cm.gray)
以上就是python数字图像处理之图像简单滤波实现的详细内容,更多关于python数字图像处理简单滤波的资料请关注脚本之家其它相关文章!
X 关闭
X 关闭