全球速看:pytorch中Tensor.to(device)和model.to(device)的区别及说明
目录
Tensor.to(device)和model.to(device)的区别区别所在举例pytorch学习笔记--to(device)用法这段代码到底有什么用呢?为什么要在GPU上做运算呢?.cuda()和.to(device)的效果一样吗?为什么后者更好?如果你有多个GPUTensor.to(device)和model.to(device)的区别
区别所在
使用GPU训练的时候,需要将Module对象和Tensor类型的数据送入到device。通常会使用 to.(device)。但是需要注意的是:
对于Tensor类型的数据,使用to.(device) 之后,需要接收返回值,返回值才是正确设置了device的Tensor。对于Module对象,只用调用to.(device) 就可以将模型设置为指定的device。不必接收返回值。来自pytorch官方文档的说明:
Tensor.to(device)
(资料图)
Module.to(device)
举例
# Module对象设置device的写法 model.to(device) # Tensor类型的数据设置 device 的写法。 samples = samples.to(device)
pytorch学习笔记--to(device)用法
在学习深度学习的时候,我们写代码经常会见到类似的代码:
img = img.to(device=torch.device("cuda" if torch.cuda.is_available() else "cpu")) model = models.vgg16_bn(pretrained=True).to(device=torch.device("cuda" if torch.cuda.is_available() else "cpu"))
也可以先定义device:
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model = model.to(device) img = img.to(device)
这段代码到底有什么用呢?
这段代码的意思就是将所有最开始读取数据时的tensor变量copy一份到device所指定的GPU上去,之后的运算都在GPU上进行。
为什么要在GPU上做运算呢?
首先,在做高维特征运算的时候,采用GPU无疑是比用CPU效率更高,如果两个数据中一个加了.cuda()或者.to(device),而另外一个没有加,就会造成类型不匹配而报错。
tensor和numpy都是矩阵,前者能在GPU上运行,后者只能在CPU运行,所以要注意数据类型的转换。
.cuda()和.to(device)的效果一样吗?为什么后者更好?
两个方法都可以达到同样的效果,在pytorch中,即使是有GPU的机器,它也不会自动使用GPU,而是需要在程序中显示指定。调用model.cuda(),可以将模型加载到GPU上去。这种方法不被提倡,而建议使用model.to(device)的方式,这样可以显示指定需要使用的计算资源,特别是有多个GPU的情况下。
如果你有多个GPU
那么可以参考以下代码:
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model = Model() if torch.cuda.device_count() > 1: model = nn.DataParallel(model,device_ids=[0,1,2]) model.to(device)
以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。
X 关闭
X 关闭
- 1转转集团发布2022年二季度手机行情报告:二手市场“飘香”
- 2充电宝100Wh等于多少毫安?铁路旅客禁止、限制携带和托运物品目录
- 3好消息!京东与腾讯续签三年战略合作协议 加强技术创新与供应链服务
- 4名创优品拟通过香港IPO全球发售4100万股 全球发售所得款项有什么用处?
- 5亚马逊云科技成立量子网络中心致力解决量子计算领域的挑战
- 6京东绿色建材线上平台上线 新增用户70%来自下沉市场
- 7网红淘品牌“七格格”chuu在北京又开一家店 潮人新宠chuu能红多久
- 8市场竞争加剧,有车企因经营不善出现破产、退网、退市
- 9北京市市场监管局为企业纾困减负保护经济韧性
- 10市场监管总局发布限制商品过度包装标准和第1号修改单