今日观点!python中pandas操作apply返回多列的实现
目录
apply 返回多列生成新列多行操作举例我们可以用DataFrame的apply函数实现对多列,多行的操作。
需要记住的是,参数axis设为1是对列进行操作,参数axis设为0是对行操作。默认是对行操作。
(资料图片仅供参考)
apply 返回多列
# height = [70, 90, 100, 120, 140, 160, 180, 200,220,240, 260] # 长度为 11 # df.shape (1000, 11) # 对df的每一行的每一个元素操作,然后再返回多列 #----------返回多列----------------- df = df.apply(lambda x: pd.Series([math.atan(i[0]/(i[1])*180/math.pi for i in zip(height, x)]).astype(float), axis=1) .rename(columns=dict(zip(list(range(0, 11)), df.columns))) #df["slope"] = df_10min.apply(lambda x: math.atan(210 / (x["ws_260"] - x["ws_50"] + 1e-7))*180/math.pi, axis=1)
import pandas as pd df_tmp = pd.DataFrame([ {"a":"data1", "cnt":100},{"a":"data2", "cnt":200}, ]) df_tmp a cnt data1 100 data2 200 方法一:使用apply 的参数result_type 来处理 def formatrow(row): a = row["a"] + str(row["cnt"]) b = str(row["cnt"]) + row["a"] return a, b df_tmp[["fomat1", "format2"]] = df_tmp.apply(formatrow, axis=1, result_type="expand") df_tmp a cnt fomat1 format2 data1 100 data1100 100data1 data2 200 data2200 200data2 方法一:使用zip打包返回结果来处理 df_tmp["fomat1-1"], df_tmp["format2-2"] = zip(*df_tmp.apply(formatrow, axis=1)) df_tmp a cnt fomat1 format2 fomat1-1 format2-2 data1 100 data1100 100data1 data1100 100data1 data2 200 data2200 200data2 data2200 200data2
生成新列
现在有如下一个DataFrame:
np.random.seed(1) df = pd.DataFrame(np.random.randn(4,2), columns=["A", "B"]) df >>> A B 0 1.624345 -0.611756 1 -0.528172 -1.072969 2 0.865408 -2.301539 3 1.744812 -0.761207
对A, B两列操作,生成C列, 其中C是字符串,由A ± B组成。下面看一下结果就明白了。
df["C"] = df.apply(lambda x: "{:.2f}±{:.2f}".format(x["A"], x["B"]), axis=1)
看一下效果
A B C
0 1.624345 -0.611756 1.62±-0.61
1 -0.528172 -1.072969 -0.53±-1.07
2 0.865408 -2.301539 0.87±-2.30
3 1.744812 -0.761207 1.74±-0.76
多行操作举例
同理可以作用在多行上。
# 对第 10 行进行操作,基于第2、3两行 df.loc[10] = df.apply(lambda x: "{:.2f}±{:.2f}".format(x[2], x[3]) )
看一下实现的效果
A B
0 1.624345 -0.611756
1 -0.528172 -1.072969
2 0.865408 -2.301539
3 1.744812 -0.761207
10 0.87±1.74 -2.30±-0.76
参考链接
[1] pandas的DataFrame使用apply实现对多列,多行操作 2021.12
[2] pandas 的apply返回多列,并赋值 2020.4
到此这篇关于python中pandas操作apply返回多列的实现的文章就介绍到这了,更多相关pandas apply返回多列内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!
X 关闭
X 关闭
- 1现代和起亚上半年出口20万辆新能源汽车同比增长30.6%
- 2如何让居民5分钟使用到各种设施?沙特“线性城市”来了
- 3AMD实现连续8个季度的增长 季度营收首次突破60亿美元利润更是翻倍
- 4转转集团发布2022年二季度手机行情报告:二手市场“飘香”
- 5充电宝100Wh等于多少毫安?铁路旅客禁止、限制携带和托运物品目录
- 6好消息!京东与腾讯续签三年战略合作协议 加强技术创新与供应链服务
- 7名创优品拟通过香港IPO全球发售4100万股 全球发售所得款项有什么用处?
- 8亚马逊云科技成立量子网络中心致力解决量子计算领域的挑战
- 9京东绿色建材线上平台上线 新增用户70%来自下沉市场
- 10网红淘品牌“七格格”chuu在北京又开一家店 潮人新宠chuu能红多久