焦点热文:python 文件读写和数据清洗
(资料图片仅供参考)
目录
一、文件操作1.1 csv文件读写1.2 excel文件读写二、数据清洗2.1 删除空值2.2 删除不需要的列2.3 删除不需要的行2.4 重置索引2.5 统计缺失2.6 排序一、文件操作
pandas内置了10多种数据源读取函数,常见的就是CSV和EXCEL使用read_csv方法读取,结果为dataframe格式在读取csv文件时,文件名称尽量是英文读取csv时,注意编码,常用编码为utf-8、gbk 、gbk2312和gb18030等使用to_csv方法快速保存1.1 csv文件读写
#读取文件,以下两种方式: #使用pandas读入需要处理的表格及sheet页 import pandas as pd df = pd.read_csv("test.csv",sheet_name="sheet1") #默认是utf-8编码 #或者使用with关键字 with open("test.csv",encoding="utf-8")as df: #按行遍历 for row in df: #修正 row = row.replace("阴性","0").replace("00.","0.") ... print(row) #将处理后的结果写入新表 #建议用utf-8编码或者中文gbk编码,默认是utf-8编码,index=False表示不写出行索引 df.to_csv("df_new.csv",encoding="utf-8",index=False)
1.2 excel文件读写
#读入需要处理的表格及sheet页 df = pd.read_excel("测试.xlsx",sheet_name="test") df = pd.read_excel(r"测试.xlsx") #默认读入第一个sheet #将处理后的结果写入新表 df1.to_excel("处理后的数据.xlsx",index=False)
二、数据清洗
2.1 删除空值
# 删除空值行 # 使用索引 df.dropna(axis=0,how="all")#删除全部值为空的行 df_1 = df[df["价格"].notna()] #删除某一列值为空的行 df = df.dropna(axis=0,how="all",subset=["1","2","3","4","5"])# 这5列值均为空,删除整行 df = df.dropna(axis=0,how="any",subset=["1","2","3","4","5"])#这5列值任何出现一个空,即删除整行
2.2 删除不需要的列
# 使用del, 一次只能删除一列,不能一次删除多列 del df["sample_1"] #修改源文件,且一次只能删除一个 del df[["sample_1", "sample_2"]] #报错 #使用drop,有两种方法: #使用列名 df = df.drop(["sample_1", "sample_2"], axis=1) # axis=1 表示删除列 df.drop(["sample_1", "sample_2"], axis=1, inplace=True) # inplace=True, 直接从内部删除 #使用索引 df.drop(df.columns[[0, 1, 2]], axis=1, inplace=True) # df.columns[ ] #直接使用索引查找列,删除前3列
2.3 删除不需要的行
#使用drop,有两种方法: #使用行名 df = df.drop(["行名1", "行名2"]) # 默认axis=0 表示删除行 df.drop(["行名1", "行名2"], inplace=True) # inplace=True, 直接从内部删除 #使用索引 df.drop(df.index[[1, 3, 5]]) # df.index[ ]直接使用索引查找行,删除1,3,5行 df = df[df.index % 2 == 0]#删除偶数行
2.4 重置索引
#在删除了行列数据后,造成索引混乱,可通过 reset_index重新生成连续索引 df.reset_index()#获得新的index,原来的index变成数据列,保留下来 df.reset_index(drop=True)#不想保留原来的index,使用参数 drop=True,默认 False df.reset_index(drop=True,inplace=True)#修改源文件 #使用某一列作为索引 df.set_index("column_name").head()
2.5 统计缺失
#每列的缺失数量 df.isnull().sum() #每列缺失占比 df3.isnull().sum()/df.shape[0] #每行的缺失数量 df3.isnull().sum(axis=1) #每行缺失占比 df3.isnull().sum(axis=1)/df.shape[1]
2.6 排序
#按每行缺失值进行降序排序 df3.isnull().sum(axis=1).sort_values(ascending=False) #按每列缺失率进行降序排序 (df.isnull().sum()/df.isnull().count()).sort_values(ascending=False)
到此这篇关于python 文件读写和数据清洗的文章就介绍到这了,更多相关python数据处理内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!
X 关闭
X 关闭
- 1亚马逊开始大规模推广掌纹支付技术 顾客可使用“挥手付”结账
- 2现代和起亚上半年出口20万辆新能源汽车同比增长30.6%
- 3如何让居民5分钟使用到各种设施?沙特“线性城市”来了
- 4AMD实现连续8个季度的增长 季度营收首次突破60亿美元利润更是翻倍
- 5转转集团发布2022年二季度手机行情报告:二手市场“飘香”
- 6充电宝100Wh等于多少毫安?铁路旅客禁止、限制携带和托运物品目录
- 7好消息!京东与腾讯续签三年战略合作协议 加强技术创新与供应链服务
- 8名创优品拟通过香港IPO全球发售4100万股 全球发售所得款项有什么用处?
- 9亚马逊云科技成立量子网络中心致力解决量子计算领域的挑战
- 10京东绿色建材线上平台上线 新增用户70%来自下沉市场