目录
前期准备及前情回顾基础索引一维数组二维数组神奇索引一维数组二维数组0 布尔索引(常用)一维数据 二维数组布尔索引条件的组合总结前期准备及前情回顾
#对于一维向量用np.arange生成以元组形式输出从0开始的数组([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
#对于二维向量(及多维向量),用np.arange生成以元组形式输出从0开始到20结束的数组,用np.reshape(4, 5)函数把一维向量转换为4行5列的二维向量
理解:numpy的二维向量对应着Python的嵌套, 只是numpy支持更高维度的列表, 这也是numpy比Python的优势之处
(资料图片)
基础索引
一维数组
和Python的list一样
#1.因为Python语言中有第0位,因此实际中的第一位对应着Python语言中的第0位,numpy是Python中的一个科学计算库,因此也遵从此法则
#2.x[2 : 4]是左闭右开形式,因此实际应在4 - 1也就是第3位结束
#3.可以冒号前后省略,省略最后面就是到最后截止,此时包含最后一位, 不用 -1
我的理解:带冒号左右都有数字的左闭右开[a, b],结束在b-1的位置,带冒号左右数字省略的不用-1,不带冒号的该在第几位结束就在第几位结束
二维数组
注意: 切片的修改会修改原来的数组
原因:NumPy经常要处理大数据, 避免每次都复制
神奇索引
其实就是:用整数数组进行的索引, 叫神奇索引
Eg.
神奇索引的用处
-实例举例:获取数组中最大的前N个数字
一维数组
二维数组0
我的理解:
列可以省略, 行不可以省略,如若不改变行, 用:代替,列也可以用:代替,也可以省略如若想改变行和列,用[[行a, 行b, 行c, ...], [列a,列b ,列c]]
布尔索引(常用)
一维数据
二维数组
我的理解:
用变量直接与数字判断输出布尔类型True 或 FalseX[]里判断, 输出满足条件的数组
布尔索引条件的组合
总结
到此这篇关于NumPy对数组按索引的文章就介绍到这了,更多相关NumPy数组按索引查询内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!
X 关闭
X 关闭
- 1联想拯救者Y70发布最新预告:售价2970元起 迄今最便宜的骁龙8+旗舰
- 2亚马逊开始大规模推广掌纹支付技术 顾客可使用“挥手付”结账
- 3现代和起亚上半年出口20万辆新能源汽车同比增长30.6%
- 4如何让居民5分钟使用到各种设施?沙特“线性城市”来了
- 5AMD实现连续8个季度的增长 季度营收首次突破60亿美元利润更是翻倍
- 6转转集团发布2022年二季度手机行情报告:二手市场“飘香”
- 7充电宝100Wh等于多少毫安?铁路旅客禁止、限制携带和托运物品目录
- 8好消息!京东与腾讯续签三年战略合作协议 加强技术创新与供应链服务
- 9名创优品拟通过香港IPO全球发售4100万股 全球发售所得款项有什么用处?
- 10亚马逊云科技成立量子网络中心致力解决量子计算领域的挑战