微头条丨PyTorch实现MNIST数据集手写数字识别详情
(相关资料图)
目录
一、PyTorch是什么?二、程序示例1.引入必要库2.下载数据集3.加载数据集4.搭建CNN模型并实例化5.交叉熵损失函数损失函数及SGD算法优化器6.训练函数7.测试函数8.运行三、总结前言:
本篇文章基于卷积神经网络CNN,使用PyTorch实现MNIST数据集手写数字识别。
一、PyTorch是什么?
PyTorch 是一个 Torch7 团队开源的 Python 优先的深度学习框架,提供两个高级功能:
强大的 GPU 加速 Tensor 计算(类似 numpy)构建基于 tape 的自动升级系统上的深度神经网络你可以重用你喜欢的 python 包,如 numpy、scipy 和 Cython ,在需要时扩展 PyTorch。
二、程序示例
下面案例可供运行参考
1.引入必要库
import torchvision import torch from torch.utils.data import DataLoader import torch.nn.functional as F
2.下载数据集
这里设置download=True,将会自动下载数据集,并存储在./data文件夹。
train_data = torchvision.datasets.MNIST(root="./data",train=True,transform=torchvision.transforms.ToTensor(),download=True) test_data = torchvision.datasets.MNIST(root="./data",train=False,transform=torchvision.transforms.ToTensor(),download=True)
3.加载数据集
batch_size=32表示每一个batch中包含32张手写数字图片,shuffle=True表示打乱测试集(data和target仍一一对应)
train_loader = DataLoader(train_data,batch_size=32,shuffle=True) test_loader = DataLoader(test_data,batch_size=32,shuffle=False)
4.搭建CNN模型并实例化
class Net(torch.nn.Module): def __init__(self): super(Net,self).__init__() self.con1 = torch.nn.Conv2d(1,10,kernel_size=5) self.con2 = torch.nn.Conv2d(10,20,kernel_size=5) self.pooling = torch.nn.MaxPool2d(2) self.fc = torch.nn.Linear(320,10) def forward(self,x): batch_size = x.size(0) x = F.relu(self.pooling(self.con1(x))) x = F.relu(self.pooling(self.con2(x))) x = x.view(batch_size,-1) x = self.fc(x) return x #模型实例化 model = Net()
5.交叉熵损失函数损失函数及SGD算法优化器
lossfun = torch.nn.CrossEntropyLoss() opt = torch.optim.SGD(model.parameters(),lr=0.01,momentum=0.5)
6.训练函数
def train(epoch): running_loss = 0.0 for i,(inputs,targets) in enumerate(train_loader,0): # inputs,targets = inputs.to(device),targets.to(device) opt.zero_grad() outputs = model(inputs) loss = lossfun(outputs,targets) loss.backward() opt.step() running_loss += loss.item() if i % 300 == 299: print("[%d,%d] loss:%.3f" % (epoch+1,i+1,running_loss/300)) running_loss = 0.0
7.测试函数
def test(): total = 0 correct = 0 with torch.no_grad(): for (inputs,targets) in test_loader: # inputs, targets = inputs.to(device), targets.to(device) outputs = model(inputs) _,predicted = torch.max(outputs.data,dim=1) total += targets.size(0) correct += (predicted == targets).sum().item() print(100*correct/total)
8.运行
if __name__ == "__main__": for epoch in range(20): train(epoch) test()
三、总结
到此这篇关于PyTorch实现MNIST数据集手写数字识别详情的文章就介绍到这了,更多相关PyTorch MNIST 内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!
X 关闭
X 关闭
- 15G资费不大降!三大运营商谁提供的5G网速最快?中国信通院给出答案
- 2联想拯救者Y70发布最新预告:售价2970元起 迄今最便宜的骁龙8+旗舰
- 3亚马逊开始大规模推广掌纹支付技术 顾客可使用“挥手付”结账
- 4现代和起亚上半年出口20万辆新能源汽车同比增长30.6%
- 5如何让居民5分钟使用到各种设施?沙特“线性城市”来了
- 6AMD实现连续8个季度的增长 季度营收首次突破60亿美元利润更是翻倍
- 7转转集团发布2022年二季度手机行情报告:二手市场“飘香”
- 8充电宝100Wh等于多少毫安?铁路旅客禁止、限制携带和托运物品目录
- 9好消息!京东与腾讯续签三年战略合作协议 加强技术创新与供应链服务
- 10名创优品拟通过香港IPO全球发售4100万股 全球发售所得款项有什么用处?