焦点讯息:Python+OpenCV之图像梯度详解
目录
1. Sobel算子1.1 Sobel介绍1.2 横向Sobel算子1.3 纵向Sobel算子1.4 合并横纵向的方法提取更好的边缘的结果1.5 利用1.3方法绘制素描风格2. Scharr算子3. Laplacian算子1. Sobel算子
OpenCV系列—本文底页有多个常用方法链接
1.1 Sobel介绍
cv2.Sobel(src, ddepth, dx, dy, ksize)
(资料图片)
ddepth:图像的深度dx和dy分别表示水平和竖直方向ksize是Sobel算子的大小import cv2 # opencv读取的格式是BGR def cv_show(img, name): cv2.imshow(name, img) cv2.waitKey() cv2.destroyAllWindows() img = cv2.imread("../img/pie.png", cv2.IMREAD_GRAYSCALE) cv2.imshow("img", img) cv2.waitKey() cv2.destroyAllWindows()
pie.png原图(右击另存为下载):
1.2 横向Sobel算子
采用上述公式中的 G x G_{x} Gx滤波器扫描整张图,提取了左右两边有梯度差的位置,但是横向看圆的上顶端和下顶端的梯度不明显所以呈现图片如下上下端为虚线的圆。
sobelx = cv2.Sobel(img, cv2.CV_64F, 1, 0, ksize=3) cv_show(sobelx, "sobelx")
结果如下:
白-黑是正数,黑-白就是负数了,所有的负数会被截断成0,所以要取绝对值。
sobelx = cv2.Sobel(img, cv2.CV_64F, 1, 0, ksize=3) sobelx = cv2.convertScaleAbs(sobelx) cv_show(sobelx, "sobelx")
加入绝对值后,梯度结果就可以有一个完整的圆:
1.3 纵向Sobel算子
采用上述公式中的 G y G_{y} Gy滤波器扫描整张图,提取了上下两边有梯度差的位置,但是纵向看圆的左顶端和右顶端的梯度不明显所以呈现图片如左右端为虚线的圆。
sobely = cv2.Sobel(img, cv2.CV_64F, 0, 1, ksize=3) sobely = cv2.convertScaleAbs(sobely) cv_show(sobely, "sobely")
1.4 合并横纵向的方法提取更好的边缘的结果
将横向梯度提取滤波器 Gx与纵向梯度提取滤波器Gy相加,即可得到效果较好的圆的边缘梯度信息。
sobelxy = cv2.addWeighted(sobelx, 0.5, sobely, 0.5, 0) cv_show(sobelxy, "sobelxy")
不推荐
sobelxy = cv2.Sobel(img, cv2.CV_64F, 1, 1, ksize=3) sobelxy = cv2.convertScaleAbs(sobelxy) cv_show(sobelxy, "sobelxy")
结果显示,相对于分开使用横纵向算子边缘重影严重:
1.5 利用1.3方法绘制素描风格
lena.jpg
原图,另存为保存:
import cv2 # opencv读取的格式是BGR img = cv2.imread("../img/lena.jpg", cv2.IMREAD_GRAYSCALE) sobelx = cv2.Sobel(img, cv2.CV_64F, 1, 0, ksize=3) sobelx = cv2.convertScaleAbs(sobelx) sobely = cv2.Sobel(img, cv2.CV_64F, 0, 1, ksize=3) sobely = cv2.convertScaleAbs(sobely) sobelxy = cv2.addWeighted(sobelx, 0.5, sobely, 0.5, 0) cv_show(sobelxy, "sobelxy")
2. Scharr算子
import cv2 # opencv读取的格式是BGR img = cv2.imread("../img/lena.jpg", cv2.IMREAD_GRAYSCALE) scharrx = cv2.Scharr(img, cv2.CV_64F, 1, 0) scharry = cv2.Scharr(img, cv2.CV_64F, 0, 1) scharrx = cv2.convertScaleAbs(scharrx) scharry = cv2.convertScaleAbs(scharry) scharrxy = cv2.addWeighted(scharrx, 0.5, scharry, 0.5, 0)
二阶动量对纹理细节区分更加丰富,结果图如下:
3. Laplacian算子
import cv2 # opencv读取的格式是BGR img = cv2.imread("../img/lena.jpg", cv2.IMREAD_GRAYSCALE) laplacian = cv2.Laplacian(img,cv2.CV_64F) laplacian = cv2.convertScaleAbs(laplacian)
需要配合其他操作共同使用,单个使用的效果不如上面两个算子,结果图如下:
到此这篇关于Python+OpenCV之图像梯度详解的文章就介绍到这了,更多相关OpenCV图像梯度内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!
X 关闭
X 关闭
- 15G资费不大降!三大运营商谁提供的5G网速最快?中国信通院给出答案
- 2联想拯救者Y70发布最新预告:售价2970元起 迄今最便宜的骁龙8+旗舰
- 3亚马逊开始大规模推广掌纹支付技术 顾客可使用“挥手付”结账
- 4现代和起亚上半年出口20万辆新能源汽车同比增长30.6%
- 5如何让居民5分钟使用到各种设施?沙特“线性城市”来了
- 6AMD实现连续8个季度的增长 季度营收首次突破60亿美元利润更是翻倍
- 7转转集团发布2022年二季度手机行情报告:二手市场“飘香”
- 8充电宝100Wh等于多少毫安?铁路旅客禁止、限制携带和托运物品目录
- 9好消息!京东与腾讯续签三年战略合作协议 加强技术创新与供应链服务
- 10名创优品拟通过香港IPO全球发售4100万股 全球发售所得款项有什么用处?