关注:Python如何查看并打印matplotlib中所有的colormap(cmap)类型
(相关资料图)
目录
查看并打印matplotlib中所有的colormap(cmap)类型方法一方法二方法三matplotlib cmap取值问题直接定义一个类来获取cmap中各个颜色方便使用可视化官方提供的cmap查看并打印matplotlib中所有的colormap(cmap)类型
代码如下:
方法一
import matplotlib.pyplot as plt cmaps = sorted(m for m in plt.cm.datad if not m.endswith("_r")) print(cmaps)
我们忽略以_r结尾的类型,因为它们都是类型后面不带有_r的反转版本(reversed version)。
所有的类型我们可以在matplotlib的源代码中找到:(如下图)
方法二
import matplotlib.pyplot as plt cmap_list1 = plt.colormaps() print(cmap_list1)
方法三
如果使用的是Pycharm编译器,那么可以在作图的时候简单的随便给定一个cmap的类型,如果给定的cmap类型是错误的,那么在编译器的错误提示信息中也会显示出所有的cmap类型。
比如,我们这里我们想要做一个高斯函数的曲面分布图,我们随意给cmap一个"aaa"的值,这时,我们可以在编译器提示窗口看到如下错误信息的输出。
import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D x = np.linspace(-3, 3, 100) y = np.linspace(-3, 3, 100) x, y = np.meshgrid(x, y) w0 = 1 gaussian = np.exp(-((pow(x, 2) + pow(y, 2)) / pow(w0, 2))) fig = plt.figure() ax = Axes3D(fig) ax.plot_surface(x, y, gaussian, cmap="aaa") ax.set_xlabel("X") ax.set_ylabel("Y") ax.set_zlabel("Z") plt.show() """ 错误提示信息: ValueError: "aaa" is not a valid value for name; supported values are "Accent", "Accent_r", "Blues", "Blues_r", "BrBG", "BrBG_r", "BuGn", "BuGn_r", "BuPu", "BuPu_r", "CMRmap", "CMRmap_r", "Dark2", "Dark2_r", "GnBu", "GnBu_r", "Greens", "Greens_r", "Greys", "Greys_r", "OrRd", "OrRd_r", "Oranges", "Oranges_r", "PRGn", "PRGn_r", "Paired", "Paired_r", "Pastel1", "Pastel1_r", "Pastel2", "Pastel2_r", "PiYG", "PiYG_r", "PuBu", "PuBuGn", "PuBuGn_r", "PuBu_r", "PuOr", "PuOr_r", "PuRd", "PuRd_r", "Purples", "Purples_r", "RdBu", "RdBu_r", "RdGy", "RdGy_r", "RdPu", "RdPu_r", "RdYlBu", "RdYlBu_r", "RdYlGn", "RdYlGn_r", "Reds", "Reds_r", "Set1", "Set1_r", "Set2", "Set2_r", "Set3", "Set3_r", "Spectral", "Spectral_r", "Wistia", "Wistia_r", "YlGn", "YlGnBu", "YlGnBu_r", "YlGn_r", "YlOrBr", "YlOrBr_r", "YlOrRd", "YlOrRd_r", "afmhot", "afmhot_r", "autumn", "autumn_r", "binary", "binary_r", "bone", "bone_r", "brg", "brg_r", "bwr", "bwr_r", "cividis", "cividis_r", "cool", "cool_r", "coolwarm", "coolwarm_r", "copper", "copper_r", "cubehelix", "cubehelix_r", "flag", "flag_r","gist_earth", "gist_earth_r", "gist_gray", "gist_gray_r", "gist_heat","gist_heat_r", "gist_ncar", "gist_ncar_r", "gist_rainbow", "gist_rainbow_r","gist_stern", "gist_stern_r", "gist_yarg", "gist_yarg_r", "gnuplot","gnuplot2", "gnuplot2_r", "gnuplot_r", "gray", "gray_r", "hot", "hot_r", "hsv", "hsv_r", "inferno", "inferno_r", "jet","jet_r", "magma", "magma_r","nipy_spectral", "nipy_spectral_r", "ocean", "ocean_r", "pink", "pink_r","plasma", "plasma_r", "prism", "prism_r", "rainbow", "rainbow_r", "seismic", "seismic_r", "spring", "spring_r", "summer", "summer_r", "tab10","tab10_r", "tab20", "tab20_r", "tab20b", "tab20b_r", "tab20c", "tab20c_r", "terrain","terrain_r", "turbo", "turbo_r", "twilight", "twilight_r", "twilight_shifted","twilight_shifted_r", "viridis", "viridis_r", "winter", "winter_r" """
matplotlib cmap取值问题
直接定义一个类来获取cmap中各个颜色方便使用
使用的话:mycolor = MyColor(‘Accent’); mycolor.get_color();# 每次就调用获取下一个cmap中的颜色。
class MyColor(object): def __init__(self, cmap_name): self.color_set = plt.get_cmap(cmap_name).colors self.idx = 0 self.color_len = len(self.color_set) def get_color(self): if self.idx == self.color_len - 1: self.idx = 0 color = self.color_set[self.idx] self.idx += 1 return color
可视化官方提供的cmap
比如查看:[‘Pastel1’, ‘Pastel2’, ‘Paired’, ‘Accent’, ‘Dark2’, ‘Set1’, ‘Set2’, ‘Set3’, ‘tab10’, ‘tab20’, ‘tab20b’, ‘tab20c’]
import matplotlib.pyplot as plt import numpy as np import matplotlib.pyplot as plt cmaps = {} gradient = np.linspace(0, 1, 256) gradient = np.vstack((gradient, gradient)) def plot_color_gradients(category, cmap_list): # Create figure and adjust figure height to number of colormaps nrows = len(cmap_list) figh = 0.35 + 0.15 + (nrows + (nrows - 1) * 0.1) * 0.22 fig, axs = plt.subplots(nrows=nrows + 1, figsize=(6.4, figh), dpi=100) fig.subplots_adjust(top=1 - 0.35 / figh, bottom=0.15 / figh, left=0.2, right=0.99) axs[0].set_title(f"{category} colormaps", fontsize=14) for ax, name in zip(axs, cmap_list): ax.imshow(gradient, aspect="auto", cmap=plt.get_cmap(name)) ax.text(-0.01, 0.5, name, va="center", ha="right", fontsize=10, transform=ax.transAxes) # Turn off *all* ticks & spines, not just the ones with colormaps. for ax in axs: ax.set_axis_off() # Save colormap list for later. cmaps[category] = cmap_list plot_color_gradients("Qualitative", ["Pastel1", "Pastel2", "Paired", "Accent", "Dark2", "Set1", "Set2", "Set3", "tab10", "tab20", "tab20b", "tab20c"])
运行后:
以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。
X 关闭
X 关闭
- 15G资费不大降!三大运营商谁提供的5G网速最快?中国信通院给出答案
- 2联想拯救者Y70发布最新预告:售价2970元起 迄今最便宜的骁龙8+旗舰
- 3亚马逊开始大规模推广掌纹支付技术 顾客可使用“挥手付”结账
- 4现代和起亚上半年出口20万辆新能源汽车同比增长30.6%
- 5如何让居民5分钟使用到各种设施?沙特“线性城市”来了
- 6AMD实现连续8个季度的增长 季度营收首次突破60亿美元利润更是翻倍
- 7转转集团发布2022年二季度手机行情报告:二手市场“飘香”
- 8充电宝100Wh等于多少毫安?铁路旅客禁止、限制携带和托运物品目录
- 9好消息!京东与腾讯续签三年战略合作协议 加强技术创新与供应链服务
- 10名创优品拟通过香港IPO全球发售4100万股 全球发售所得款项有什么用处?