观焦点:pandas创建DataFrame对象失败的解决方法
目录
报错代码报错翻译报错原因解决方法创建DataFrame对象的四种方法1. list列表构建DataFrame2. dict字典构建DataFrame3. ndarray创建DataFrame4. Series创建DataFrame报错代码
粉丝群一个小伙伴想pandas创建DataFrame对象,但是发生了报错(当时他心里瞬间凉了一大截,跑来找我求助,然后顺利帮助他解决了,顺便记录一下希望可以帮助到更多遇到这个bug不会解决的小伙伴),报错代码如下:
import pandas as pd data = {"name": ["a", "b"], "Height": [140, 150, 160, 170], "Weight": [40, 50, 60, 70]} df = pd.DataFrame(data, index=list("abcd")) print(df)
报错信息截图如下所示:
报错翻译
报错信息翻译如下:
【资料图】
值错误:传递值的形状为(2,3),索引表示(4,3)
报错原因
传递创建DataFrame的值和索引对不上,小伙伴们按下面正确的方法创建即可!!!
解决方法
每一个列表的长度都要相同
import pandas as pd data = {"name": ["a", "b","c","d"], "Height": [155, 160, 175, 180], "Weight": [50, 48, 52, 65]} df = pd.DataFrame(data, index=list("abcd")) print(df)
运行结果:
创建DataFrame对象的四种方法
DataFrame 构造方法如下:
pandas.DataFrame( data, index, columns, dtype, copy)
参数说明:
data:一组数据(ndarray、series, map, lists, dict 等类型)。index:索引值,或者可以称为行标签。columns:列标签,默认为 RangeIndex (0, 1, 2, …, n) 。dtype:数据类型。copy:拷贝数据,默认为 False。1. list列表构建DataFrame
1)通过单列表创建
>>> import pandas as pd >>> >>> data = [0, 1, 2, 3, 4, 5] >>> df = pd.DataFrame(data) >>> print(df) 0 0 0 1 1 2 2 3 3 4 4 5 5 >>> print(type(df))
2)通过嵌套列表创建
>>> import pandas as pd >>> >>> data = [["小明", 20], ["小红", 10]] >>> df = pd.DataFrame(data, columns=["name", "age"], dtype=float) sys:1: FutureWarning: Could not cast to float64, falling back to object. This behavior is deprecated. In a future version, when a dtype is passed to "DataFrame", either all columns will be cast to that dtype, or a TypeError will be raised >>> print(df) name age 0 小明 20.0 1 小红 10.0 >>> print(type(df))
3)列表中嵌套字典(字典的键被用作列名,缺失则赋值为NaN):
>>> import pandas as pd >>> >>> data = [{"A": 1, "B": 2}, {"A": 3, "B": 4, "C": 5}] >>> df = pd.DataFrame(data) >>> print(df) A B C 0 1 2 NaN 1 3 4 5.0 >>> print(type(df))
2. dict字典构建DataFrame
使用 dict 创建,dict中列表的长度必须相同, 如果传递了index,则索引的长度应等于数组的长度。如果没有传递索引,则默认情况下,索引将是range(n),其中n是数组长度。
1)普通创建:
>>> import pandas as pd >>> >>> data = {"name": ["小红", "小明", "小白"], "age": [10, 20, 30]} >>> df = pd.DataFrame(data) >>> print(df) name age 0 小红 10 1 小明 20 2 小白 30 >>> print(type(df))
2)设置index创建:
>>> import pandas as pd >>> >>> data = {"name": ["小红", "小明", "小白"], "age": [10, 20, 30]} >>> df = pd.DataFrame(data, index=["老三", "老二", "老大"]) >>> print(df) name age 老三 小红 10 老二 小明 20 老大 小白 30 >>> print(type(df))
3. ndarray创建DataFrame
1)普通方式创建:
>>> import pandas as pd >>> import numpy as np >>> >>> data = np.random.randn(3, 3) >>> print(data) [[-1.9332579 0.70876382 -0.44291914] [-0.26228642 -1.05200338 0.57390067] [-0.49433001 0.70472595 -0.50749279]] >>> print(type(data))>>> df = pd.DataFrame(data) >>> print(df) 0 1 2 0 -1.933258 0.708764 -0.442919 1 -0.262286 -1.052003 0.573901 2 -0.494330 0.704726 -0.507493 >>> print(type(df))
2)设置列名创建:
>>> import pandas as pd >>> import numpy as np >>> >>> data = np.random.randn(3, 3) >>> print(data) [[-0.22028147 0.62374794 -0.66210282] [-0.71785439 -1.21004547 1.15663811] [ 1.47843923 0.4385811 0.31931312]] >>> print(type(data))>>> df = pd.DataFrame(data, columns=list("ABC")) >>> print(df) A B C 0 -0.220281 0.623748 -0.662103 1 -0.717854 -1.210045 1.156638 2 1.478439 0.438581 0.319313 >>> print(type(df))
4. Series创建DataFrame
>>> import pandas as pd >>> >>> data = {"A": pd.Series(1, index=list(range(4)), dtype="float32"), ... "B": pd.Series(2, index=list(range(4)), dtype="float32"), ... "C": pd.Series(3, index=list(range(4)), dtype="float32") ... } >>> df = pd.DataFrame(data) >>> print(df) A B C 0 1.0 2.0 3.0 1 1.0 2.0 3.0 2 1.0 2.0 3.0 3 1.0 2.0 3.0 >>> print(type(df))
帮忙解决
到此这篇关于pandas创建DataFrame对象失败的解决方法的文章就介绍到这了,更多相关pandas创建DataFrame对象失败内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!
X 关闭
X 关闭
- 15G资费不大降!三大运营商谁提供的5G网速最快?中国信通院给出答案
- 2联想拯救者Y70发布最新预告:售价2970元起 迄今最便宜的骁龙8+旗舰
- 3亚马逊开始大规模推广掌纹支付技术 顾客可使用“挥手付”结账
- 4现代和起亚上半年出口20万辆新能源汽车同比增长30.6%
- 5如何让居民5分钟使用到各种设施?沙特“线性城市”来了
- 6AMD实现连续8个季度的增长 季度营收首次突破60亿美元利润更是翻倍
- 7转转集团发布2022年二季度手机行情报告:二手市场“飘香”
- 8充电宝100Wh等于多少毫安?铁路旅客禁止、限制携带和托运物品目录
- 9好消息!京东与腾讯续签三年战略合作协议 加强技术创新与供应链服务
- 10名创优品拟通过香港IPO全球发售4100万股 全球发售所得款项有什么用处?