观察:OpenCV学习之图像形态学处理详解
目录
1.腐蚀操作2.膨胀操作3.开闭运算4.梯度运算5.Top Hat Black Hat运算本文是OpenCV图像视觉入门之路的第11篇文章,本文详细的在图像形态学进行了图像处理,例如:腐蚀操作、膨胀操作、开闭运算、梯度运算、Top Hat Black Hat运算等操作。
1.腐蚀操作
从下面代码中可以看到有三幅腐蚀程度不同的图,腐蚀越严重像素就越模糊
import cv2 import numpy as np from numpy import unicode if __name__ == "__main__": img1 = cv2.imread("D:/Jupyter_Notebooks/0.jpg") # 读取彩色图像(BGR) kernel = np.ones((3, 3), np.uint8) erosion = cv2.erode(img1, kernel) cv2.imshow("img1", erosion) # 显示叠加图像 dst img2 = cv2.imread("D:/Jupyter_Notebooks/0.jpg") # 读取彩色图像(BGR) kernel = np.ones((10, 10), np.uint8) erosion_1 = cv2.erode(img2, kernel) cv2.imshow("erosion_1", erosion_1) img3 = cv2.imread("D:/Jupyter_Notebooks/0.jpg") # 读取彩色图像(BGR) kernel = np.ones((30, 30), np.uint8) erosion_2 = cv2.erode(img3, kernel) cv2.imshow("erosion_2", erosion_2) cv2.waitKey(0) cv2.destroyAllWindows()
binary_img = np.array([ [0, 0, 0, 0, 0], [0,255,255,255,0], [0,255,255,255,0], [0,255,255,255,0], [0, 0, 0, 0, 0]],np.uint8) ones((3,3),np.uint8) [[ 0 0 0 0 0] [ 0 0 0 0 0] [ 0 0 255 0 0] [ 0 0 0 0 0] [ 0 0 0 0 0]]
通过上面的例子发现,经过3x3的kernel之后,最终只保留了中心的255像素,周边的255都变成了0。在进行腐蚀操作的时候,就是通过kernel大小的卷积在原图像上滑动,只有当kernel范围内的像素全为255时输出才为255,否则输出为0,所以kernel越大最终白色像素保留的会越少。
(资料图片)
2.膨胀操作
图像经过膨胀之后,白色像素的范围变大了。在做膨胀的时候,只要当kernel范围内的像素有255时输出就为255。
3.开闭运算
开运算其实就是先通过腐蚀操作后面再进行膨胀,闭运算和开运算恰好相反先通过膨胀操作后面再进行腐蚀。
import cv2 import numpy as np from numpy import unicode if __name__ == "__main__": img1 = cv2.imread("D:/Jupyter_Notebooks/0.jpg") # 读取彩色图像(BGR) # 定义kernel kernel = np.ones((3, 3), np.uint8) # 开运算 open_img = cv2.morphologyEx(img1, cv2.MORPH_OPEN, kernel) # 闭运算 close_img = cv2.morphologyEx(img1, cv2.MORPH_CLOSE, kernel) cv2.imshow("open_img", open_img) # 显示叠加图像 dst cv2.imshow("close_img", close_img) # 显示叠加图像 dst cv2.waitKey(0) cv2.destroyAllWindows()
4.梯度运算
梯度运算等价于膨胀运算-腐蚀运算 梯度运算主要是用来保留图像的轮廓
5.Top Hat Black Hat运算
Top Hat运算等价于原始图像 - 开运算,Black Hat运算等价于闭运算 - 原始图像
形态学Top-Hat变换是指形态学顶帽操作与黑帽操作,前者是计算源图像与开运算结果图之差,后者是计算闭运算结果与源图像之差。
形态学Top-Hat变换是常用的一种滤波手段,具有高通滤波的某部分特性,可实现在图像中检测出周围背景亮结构或周边背景暗结构。
顶帽操作常用于检测图像中的峰结构。
黑帽操作常用于检测图像中的波谷结构。
import cv2 import numpy as np from numpy import unicode if __name__ == "__main__": img1 = cv2.imread("D:/Jupyter_Notebooks/0.jpg") # 读取彩色图像(BGR) # 定义kernel kernel = np.ones((3, 3), np.uint8) tophat_img = cv2.morphologyEx(img1, cv2.MORPH_TOPHAT, kernel) blackhat_img = cv2.morphologyEx(img1, cv2.MORPH_BLACKHAT, kernel) cv2.imshow("tophat_img", tophat_img) # 显示叠加图像 dst cv2.imshow("blackhat_img", blackhat_img) # 显示叠加图像 dst cv2.waitKey(0) cv2.destroyAllWindows()
以上就是OpenCV学习之图像形态学处理详解的详细内容,更多关于OpenCV图像形态学处理的资料请关注脚本之家其它相关文章!
X 关闭
X 关闭
- 15G资费不大降!三大运营商谁提供的5G网速最快?中国信通院给出答案
- 2联想拯救者Y70发布最新预告:售价2970元起 迄今最便宜的骁龙8+旗舰
- 3亚马逊开始大规模推广掌纹支付技术 顾客可使用“挥手付”结账
- 4现代和起亚上半年出口20万辆新能源汽车同比增长30.6%
- 5如何让居民5分钟使用到各种设施?沙特“线性城市”来了
- 6AMD实现连续8个季度的增长 季度营收首次突破60亿美元利润更是翻倍
- 7转转集团发布2022年二季度手机行情报告:二手市场“飘香”
- 8充电宝100Wh等于多少毫安?铁路旅客禁止、限制携带和托运物品目录
- 9好消息!京东与腾讯续签三年战略合作协议 加强技术创新与供应链服务
- 10名创优品拟通过香港IPO全球发售4100万股 全球发售所得款项有什么用处?