目录
前言先来看个例子内存对齐机制案例进一步分析总结前言
结构体的定义,大家都很熟悉,但想要定义出更节省内存空间的结构体,可不是一件简单的事。
我们必须掌握了Go的结构体内存对齐机制,才能做出相应的优化(节省内存并提高性能)。
先来看个例子
下面定义两个结构体,字段都一样,只是部分字段稍微调整了一下顺序。
(资料图片仅供参考)
但输出的结果,为什么bad占用24字节,而good却只占用16字节呢?一个顺序调整就节省了8个字节,太神奇了
type BadSt struct { A int32 B int64 C bool } type GoodSt struct { A int32 C bool B int64 } func main() { bad := BadSt{A: 10, B: 20, C: false} fmt.Println(unsafe.Sizeof(bad)) good := GoodSt{A: 10, B: 20, C: false} fmt.Println(unsafe.Sizeof(good)) } //输出结果: //24 //16
想要解开这个问题,我们得先来学习一下内存对齐机制,然后再来进一步分析
内存对齐机制
基本概念为了能让CPU可以更快的存储与读取到各个字段,Go编译器会帮我们把结构体做数据的对齐。所谓的数据对齐,是指内存地址是所存储数据大小的整数倍(按字节为单位),以便CPU可以一次将该数据从内存中读取出来,减少了读取次数。编译器通过在结构体的各个字段之间填充一些空白已达到对齐的目的。
CPU访问内存CPU 访问内存时,并不是逐个字节访问,而是以机器字(word)为单位进行访问。比如 64位CPU的字长(word size)为8bytes,那么CPU访问内存的单位也是8字节,每次加载的内存数据也是固定的若干字长,如8words(64bytes)、16words(128bytes)等
对齐系数不同硬件平台占用的大小和对齐值都可能是不一样的,每个特定平台上的编译器都有自己的默认"对齐系数",32位系统对齐系数是4,64位系统对齐系数是8
不同类型的对齐系数也可能不一样,使用Go
语言中的unsafe.Alignof
函数可以返回相应类型的对齐系数,对齐系数都符合2^n
这个规律,最大也不会超过8
func main() { fmt.Printf("bool: %d\n", unsafe.Alignof(bool(true))) fmt.Printf("string: %d\n", unsafe.Alignof(string("a"))) fmt.Printf("int: %d\n", unsafe.Alignof(int(0))) fmt.Printf("int32: %d\n", unsafe.Alignof(int32(0))) fmt.Printf("int64: %d\n", unsafe.Alignof(int64(0))) fmt.Printf("float64: %d\n", unsafe.Alignof(float64(0))) fmt.Printf("float32:%d\n", unsafe.Alignof(float32(0))) } //输出结果: //bool: 1 //string: 8 //int: 8 //int32: 4 //int64: 8 //float64:8 //float32:4对齐原则结构体变量中成员的偏移量必须是成员大小的整数倍整个结构体的内存大小必须是最大字节的整数倍(结构体的内存占用是1/4/8/16byte…)
案例进一步分析
BadSt结构体,占用24个字节type BadSt struct { A int32 B int64 C bool }
分析过程:
字段A 4字节:先计算偏移量,最开头下标为0,0%4=0,正好整除,先占用4个字节;字段B 8字节:下标4-7,对8都不能整除,则填充空白,下标8可以整除,所以下标8-15 8个字节为字段B的存储使用;字段C 1字节:下标16,对1可以整除,所以下标16则用作字段C的存储;最后,该结构体字段最大字节为8且目前已占用17字节,要保证是整数倍,所以最后面需要填充7个字节,占满24字节,才能满足条件(对齐原则2)。 GoodSt结构体,占用16个字节type GoodSt struct { A int32 C bool B int64 }
分析过程:
字段A 4字节:先计算偏移量,最开头下标为0,0%4=0,正好整除,先占用4个字节;字段C 1字节:下标4,对1可以整除,所以下标4则用作字段C的存储;字段B 8字节:下标5-7,对8都不能整除,则填充空白,下标8可以整除,所以下标8-15 8个字节为字段B的存储使用;最后,该结构体字段最大字节为8且目前已占用16字节,正好是整数倍,所以后面不再需要填充空白了。总结
掌握了内存对齐机制后,结构体struct的优化,是不是也会觉得原来如此简单高效呀,调整下字段顺序,效果立竿见影(简单理解,就是将对齐系数小的字段,尽可能的放在一起)。
内存对齐其实就是典型的空间换时间的方式,来达到优化的目的。牢记对齐原则,对实际场景进行分析,一切都会很变得清晰明了。
以上就是详解简单高效的Go struct优化的详细内容,更多关于Go struct优化的资料请关注脚本之家其它相关文章!
X 关闭
X 关闭
- 15G资费不大降!三大运营商谁提供的5G网速最快?中国信通院给出答案
- 2联想拯救者Y70发布最新预告:售价2970元起 迄今最便宜的骁龙8+旗舰
- 3亚马逊开始大规模推广掌纹支付技术 顾客可使用“挥手付”结账
- 4现代和起亚上半年出口20万辆新能源汽车同比增长30.6%
- 5如何让居民5分钟使用到各种设施?沙特“线性城市”来了
- 6AMD实现连续8个季度的增长 季度营收首次突破60亿美元利润更是翻倍
- 7转转集团发布2022年二季度手机行情报告:二手市场“飘香”
- 8充电宝100Wh等于多少毫安?铁路旅客禁止、限制携带和托运物品目录
- 9好消息!京东与腾讯续签三年战略合作协议 加强技术创新与供应链服务
- 10名创优品拟通过香港IPO全球发售4100万股 全球发售所得款项有什么用处?