环球速读:NumPy矩阵乘法的实现
目录
NumPy矩阵乘法逐元素矩阵乘法矩阵乘积运算矩阵点积NumPy矩阵乘法
矩阵乘法是将两个矩阵作为输入值,并将 A 矩阵的行与 B 矩阵的列对应位置相乘再相加,从而生成一个新矩阵,如下图所示:
注意:必须确保第一个矩阵中的行数等于第二个矩阵中的列数,否则不能进行矩阵乘法运算。
图1:矩阵乘法
(资料图片)
矩阵乘法运算被称为向量化操作,向量化的主要目的是减少使用的 for 循环次数或者根本不使用。这样做的目的是为了加速程序的计算。
下面介绍 NumPy 提供的三种矩阵乘法,从而进一步加深对矩阵乘法的理解。
逐元素矩阵乘法
multiple() 函数用于两个矩阵的逐元素乘法,示例如下:
import numpy as np array1=np.array([[1,2,3],[4,5,6],[7,8,9]],ndmin=3) array2=np.array([[9,8,7],[6,5,4],[3,2,1]],ndmin=3) result=np.multiply(array1,array2) result
输出结果:
array([[[ 9, 16, 21],
[24, 25, 24],
[21, 16, 9]]])
矩阵乘积运算
matmul() 用于计算两个数组的矩阵乘积。示例如下:
import numpy as np array1=np.array([[1,2,3],[4,5,6],[7,8,9]],ndmin=3) array2=np.array([[9,8,7],[6,5,4],[3,2,1]],ndmin=3) result=np.matmul(array1,array2) print(result)
输出结果:
数组([[[
[30,24,18],
[84,69,54 ],[138,114,90]]])
矩阵点积
dot() 函数用于计算两个矩阵的点积。如下所示:
示例如下:
import numpy as np array1=np.array([[1,2,3],[4,5,6],[7,8,9]],ndmin=3) array2=np.array([[9,8,7],[6,5,4],[3,2,1]],ndmin=3) result=np.dot(array1,array2) print(result)
输出结果:
array([[[[ 30, 24, 18]],
[[ 84, 69, 54]],
[[138, 114, 90]]]])
到此这篇关于NumPy矩阵乘法的实现的文章就介绍到这了,更多相关NumPy矩阵乘法内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!
关键词:
下一篇:最后一页
X 关闭
X 关闭
- 15G资费不大降!三大运营商谁提供的5G网速最快?中国信通院给出答案
- 2联想拯救者Y70发布最新预告:售价2970元起 迄今最便宜的骁龙8+旗舰
- 3亚马逊开始大规模推广掌纹支付技术 顾客可使用“挥手付”结账
- 4现代和起亚上半年出口20万辆新能源汽车同比增长30.6%
- 5如何让居民5分钟使用到各种设施?沙特“线性城市”来了
- 6AMD实现连续8个季度的增长 季度营收首次突破60亿美元利润更是翻倍
- 7转转集团发布2022年二季度手机行情报告:二手市场“飘香”
- 8充电宝100Wh等于多少毫安?铁路旅客禁止、限制携带和托运物品目录
- 9好消息!京东与腾讯续签三年战略合作协议 加强技术创新与供应链服务
- 10名创优品拟通过香港IPO全球发售4100万股 全球发售所得款项有什么用处?